The Obligatory Activation of Practiced Complex Multiplication Facts and What it Tells Us About Models of Arithmetic Processing

Loel Tronsky

Abstract


Three experiments were conducted in which adults practiced complex multiplication problems (e.g., 4 x 17). In Experiments 1 and 2, after practice participants completed a number-matching task in which two digits (cues) were followed by a single digit (probe) and had to determine whether the probe matched either of the cues. In simple arithmetic (e.g., 4 x 3), when the probe is the product of the cues (12), participants are slower/more error prone when determining whether there is a match. Results of Experiment 1 extended this effect to complex multiplication. In Experiment 2, participants practiced problems with the larger operand first (e.g., 17 x 4) or with the smaller operand first (e.g., 4 x 17). The number-matching interference effect from Experiment 1 was replicated, and was equal across the two groups whether cues were presented in their practiced or non-practiced order. Experiment 3 was conducted to determine if two additional simple multiplication effects, consistency and relatedness, could be documented for complex multiplication. After practice, in a verification task (4 x 13 = 56?) it was found that when presented answers shared a digit with the decade digit of the correct answer (consistency) or were a correct answer to another practiced problem (relatedness), participants rejected answers more slowly and/or less accurately. Together, findings from the three experiments support arithmetic models that posit that commuted pairs are not represented in long-term memory independently and that posit representations of two-digit multiplication answers are decomposed into decades and units during arithmetic processing.

Keywords


complex multiplication, numerical cognition, arithmetic, number-matching, practice, obligatory activation

Full Text:

PDF HTML
Downloads: 618


Copyright (c) 2016 Tronsky