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Abstract
Higher numeracy is associated with better comprehension and use of numeric information as well as reduced susceptibility to some 
decision biases. We extended this line of work by showing that increased numeracy predicted probability maximizing (versus 
matching) as well as a better appreciation of large sample sizes. At the same time, we replicated the findings that the more numerate 
were less susceptible to the ratio bias and base rate neglect phenomena. Decision time predicted accuracy for the ratio bias, 
probability matching, and sample size scenarios, but not the base rate scenarios. Interestingly, this relationship between decision time 
and accuracy was positive for the ratio bias problems, but negative for the probability matching and sample size scenarios. 
Implications for research on cognitive ability and decision biases are discussed.
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Non-Technical Summary

Background
People’s ability to understand and apply mathematical concepts (i.e., numeracy) are important skills for everyday reasoning 
and decision-making. Previous research shows that higher numeracy is generally associated with better comprehension and 
use of numeric information. It also predicts greater accuracy on decision scenarios that tend to elicit an easy, but incorrect 
response rather than a correct one requiring the application of a numeric or statistical concept. When recording people’s 
decision time for these scenarios, researchers sometimes find that quick decisions yield correct answers, while other times 
slower decision times lead to more correct answers.

Why was this study done?
Our goal was to examine whether numeracy predicted reasoning about probability and small sample sizes in two classic 
decision scenarios. We also measured decision time to understand how numeracy and decision time predict accuracy in these 
scenarios.
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What did the researchers do and find?
We presented participants with several common decision-making tasks while simultaneously measuring the amount of time 
it took them to make a decision. We also measured participants’ numeracy by having them complete commonly used math 
tests. Finally, we related their numeracy ability and decision time to their performance on the tasks. Results indicated that 
higher numeracy was related to increased accuracy on the decision-making tasks. Decision times, however, showed that longer 
deliberation times were better for some tasks (i.e., reasoning about proportions), while quicker decisions were better for others 
(i.e., reasoning about probability and small sample sizes).

What do these findings mean?
This work provides evidence that numeracy is related to better decision making amongst previously untested decision tasks 
and work should continue to test additional tasks. The decision time data provides additional evidence that long deliberate 
processing is not required to make rational optimal choices. This understanding has potential impacts on several theories of 
decision-making and rationality.

Highlights
• Increased numeric ability was related to more optimal decision making across several different tasks.
• Additional investigations indicated that decision time was also related to performance, but the direction of results 

differed across tasks.

The ability to understand and apply mathematical concepts (i.e., numeracy) has been shown to predict the quality of 
people’s decisions as well as how they process decision information (for review see Peters, 2012). Higher numeracy is 
generally associated with better comprehension and use of numeric information. It is also accompanied by a decreased 
susceptibility to certain decision biases, such as ratio bias, attribute framing, and base rate neglect (Obrecht & Chesney, 
2013, 2016; Peters et al., 2006).

There is less work on how numerical ability relates to probability matching and sample size neglect. The former 
is a persistent bias in which people’s predictions of a probabilistic outcome tend to match the actual probabilities of 
each outcome rather than choosing the most probable outcome every time (i.e., probability maximizing strategy). For 
example, when given a 6-sided die with 4 red and 2 green sides, and then asked to guess the outcome of each individual 
roll in a series, people tend to predict that (over the course of six rolls) 4 will result in red and 2 will result in green, 
rather than predicting red for each individual roll in the series, which is the optimal solution. Sample size neglect is 
the tendency to underestimate how small samples have greater sampling error (Kahneman & Tversky, 1982; Yoon et al., 
2021). Scenarios assessing this bias have people consider, for example, whether a more skilled squash player will have 
a better chance of winning if the game is played to 9 or 15 points or if it makes no difference. Typically, people believe 
that the length of the game should make no difference and thus neglect how a small sample (in this case, a shorter 
game) is more likely to produce an atypical outcome (i.e., a less skilled player winning).

Additionally, we recorded decision times to examine whether high and low numerates differ in their deliberation 
time and strategies. Some previous research indicates that highly numerate individuals employ more effortful and 
elaborative search procedures, spending significantly more time attending to all aspects of the problem, including the 
numeric components (Jasper et al., 2017). Rooted in the assumptions of dual process theories, it would appear from this 
work that high numerates are more likely to engage in System 2 based processing. In fact, independent of numeracy, 
decision time has been linked to accuracy in some tasks. For example, Rubinstein (2013) compared fast and slow res­
ponders on several decision problems. For some, such as the Wason card task, the conjunction fallacy, and the framing 
of roulette gambles, fast responders were less likely to provide optimal solutions than slow responders. Other problems, 
however, did not show such a difference between fast and slow responders (e.g., the Ellsberg paradox and risky choice 
framing). Rubinstein concluded that for problems with a clear mistake (e.g., failing to choose a disconfirmation strategy 
in the Wason card task), there is a positive relationship between decision time and accuracy. In contrast, other problems 
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aimed at demonstrating how behavior violated normative axioms did not adhere to Kahneman’s (2011) thinking fast and 
slow framework positing that errors are the product of quick, intuitive responses.

Other more recent research, however, argues that there is not strong evidence for the assumptions of the traditional 
fast/slow dual process theories, with several studies providing evidence that human decision making often violates 
these traditional theories (De Neys, 2023; De Neys & Pennycook, 2019). For example, several studies have employed 
a two-response paradigm where participants provide an initial intuitive response to a decision problem, followed by 
a deliberate response, allowing researchers to directly compare and contrast these responses (Thompson et al., 2011; 
Thompson & Johnson, 2014). Bago and De Neys (2017) then extended this paradigm to include a direction of change 
analysis wherein the 4 possible directions of a choice (Incorrect intuition/incorrect deliberation, incorrect intuition/cor­
rect deliberation, correct intuition/incorrect deliberation, and correct intuition/correct deliberation) could be analyzed. 
Using this paradigm, it became clear that participants who generated the correct response during the deliberation stage 
were actually likely to have already generated the correct response intuitively. Bago and De Neys (2019) then used the 
Bat and Ball problem from the Cognitive Reflection Test (CRT; Frederick, 2005) to investigate the direction of change. As 
this test was specifically designed to prime an incorrect intuitive response that needs to be overridden by deliberation, 
it should provide a more stringent test of participant’s correct intuitions. Consistent with the results from the previous 
study, Bago and De Neys (2019) found that, amongst cases where participants correctly answered the problem, the 
majority had actually already generated the correct answer intuitively.

Extending this line of work, Raoelison et al. (2020) gave participants several decision tasks while using this two-re­
sponse paradigm and related it to measures of cognitive capacity. As predicted by the traditional System 1 / System 
2 theories, deliberative decision making was related to cognitive capacity. However, opposite of the traditional views, 
the relationship between cognitive capacity and intuitive responses was actually stronger than the relationship with 
deliberation. Other research has also pointed to mind-ware instantiation (Rapan & Valerjev, 2021) and mind-ware 
automatization (Burič, 2023) as potential mechanisms for correct intuitions and more optimal performance on decision 
tasks. Whatever the mechanisms, it seems clear that decision makers are capable of producing optimal choices intuitive­
ly and that cognitive capacity seems to be strongly related to this intuitive processing.

To extend this work, we sought to investigate numeracy in a similar manner as cognitive capacity to determine 
if high numerates were spending more time on the decision problems than low numerates and making more optimal 
choices across multiple tasks. This would provide evidence for more effortful processing of numeric information similar 
to the recent work of Jasper et al. (2017) and a general consensus with the traditional system 1 / system 2 models. On 
the other hand, if high numerates were making more optimal choices regardless of deliberation time, or in fact quicker 
than low numerates in some tasks, it would provide evidence for numeracy's relationship to quick optimal intuitions 
consistent with the work of Raoelison et al. (2020). Though we conducted the study in a similar manner to Rubinstein 
(2013), we thought it was important to select different biases than those used in that study to investigate the relationship 
between decision time and accuracy in other contexts.

Lastly, we found it important to explore the interrelationships among several decision biases at once. Specifically, we 
selected four biases that on the surface involve reasoning with probabilities, which previous research has indicated is 
often challenging for individuals to understand and can lead to suboptimal decision making (Reyna & Brainerd, 2007). 
Although these biases are speculated to rely on similar underlying processes, there is a dearth of research testing the 
relationships among different decision biases. Some existing research suggests that not all decision biases are correlated 
with one another (Del Missier et al., 2012). Combined with our analysis of decision time, this approach helps illuminate 
potential mechanisms operating between the tasks and could help explain high numerates’ increased accuracy on these 
tasks.

Study 1

Numeracy and Decision Biases
Numeracy predicts people’s ability to transform numerical information into different formats, and therefore, is helpful 
in reducing certain decision biases. For example, compared to low numerates, high numerates are less likely to treat 
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equivalent probabilities (e.g., 10% versus 10 out of 100) presented in the same problem differently (Peters et al., 2006). 
One potential explanation is that high numerates are more likely to transform one numerical format (frequency) into 
another (percentage) (Peters, 2012).

Other evidence suggests that high and low numerates not only differ with respect to their transformation skills, 
but also their ability to obtain accurate information from numbers. For example, high numerates have more precise 
mental number lines than low numerates (Peters et al., 2008). High numerates also tend to use numeric information to 
guide their decision making and their choices more often conform to normative models, such as expected utility theory 
(Cokely & Kelley, 2009; Dieckmann et al., 2009; Jasper et al., 2013). In contrast, low numerates tend to be influenced 
by non-numeric information, such as mood and verbal descriptions (Dieckmann et al., 2009; Peters et al., 2009). Study 
1 investigated numeracy’s relationship with probability matching and two other previously examined decision biases—
ratio bias and base rate neglect. Each of these decision problems will be discussed in turn.

Probability Matching

Probability matching is a probabilistic contingency task in which participants must predict a randomly determined 
outcome over several trials. Sometimes participants are given the proportion of times each outcome will occur as with 
the die roll; other times they must learn the outcome proportions through experience. In both formats, people tend to 
switch back and forth matching the proportions. Mathematically, this matching strategy is inferior to the maximizing 
strategy of choosing the most probable outcome for all trials. We expected numeracy would be related to performance 
on this task because previous research has shown that higher cognitive ability (measured by SAT scores or the CRT) is 
also associated with the use of a maximizing strategy (Gaissmaier et al., 2016; Koehler & James, 2010; Stanovich & West, 
2008). While numeracy and other cognitive ability measures are components of the positive manifold of ‘g’ or general 
intelligence, research suggests that numeracy explains additional variance in performance beyond these other measures 
(Cokely & Kelley, 2009; Liberali et al., 2012; Sinayev & Peters, 2015).

Non-Causal Base Rate

De Neys and Glumicic (2008) presented participants with scenarios such as the following:

In a study 1000 people were tested. Among the participants there were 995 lawyers and 5 engineers. 
Jack is a randomly chosen participant of this study.
Jack is 36 years old. He is not married and is somewhat introverted. He likes to spend his free time 
reading science fiction and writing computer programs.
What is most likely?

a. Jack is an engineer
b. Jack is a lawyer

Here participants receive base rate information (i.e., 995 lawyers and 5 engineers) plus a biographical sketch of 
one person in the sample that is incongruous with the typical characteristics of the larger group (i.e., lawyers) and 
more stereotypical of the smaller group. In this scenario, the base rate information and biographical sketch conflict. 
Participants tend to use the representativeness of the biographical sketch to guide their judgments and choose that Jack 
is an engineer rather than use the base-rate information, which points to Jack being a lawyer. In contrast, when the base 
rate information and biographical sketch do not conflict, participants are much more likely to choose the more probable 
group. Numeracy, indeed, predicts base rate usage independent of other manipulations aimed at de-biasing participants 
(Obrecht & Chesney, 2016).

Ratio Bias

We sought to conceptually replicate Peters et al. (2006) who showed that low numerates were more likely to exhibit 
ratio bias or denominator neglect, which is the tendency to prefer a prospect offering a greater absolute number of 
winning chances (e.g., 9 in 100) over a proportionally, superior prospect (e.g., 1 in 10). Additionally, we tested whether 
numeracy predicted optimal responses on problems in which the normatively correct answer was also the option with 
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the largest numerator. On these “no-conflict” trials, we expected that low numerates should perform better and more 
similarly to high numerates.

Correlations Among Different Decision Biases

Previous research has found that normative responses on one decision problem are moderately correlated with norma­
tive responses on other decision problems (Stanovich & West, 1998). For example, performance on ratio bias and 
probability matching tasks were positively correlated (Koehler & James, 2010). Other studies have used composite 
measures of typical heuristics and biases as dependent measures. These studies have often shown that cognitive ability 
measures, such as CRT (Toplak et al., 2011) and SAT (Stanovich & West, 1998) have predicted performance on these 
composite tasks. Few studies, however, report the relationships between these decision tasks.

In fact, in one of the few studies to report the relationships between decision tasks, Del Missier et al. (2012) 
found evidence suggesting that while some decisions tasks were in fact correlated with one another, others showed no 
relationship. This examination, however, did not include all of the decision tasks investigated in this report. As such, 
a tertiary aim of this study was to explore the interrelationships between the ratio bias, probability maximization, and 
base rate tasks.

Hypotheses
In sum, we aimed to document that highly numerate individuals were less likely to exhibit probability matching, base 
rate neglect, and ratio bias (Hypothesis 1). We also tested how numeracy and decision time predicted accuracy on these 
tasks. Specifically, we hypothesized that higher numeracy and longer deliberation time would be associated with more 
optimal choices (Hypothesis 2). Finally, we investigated the interrelationships among the three decision biases. Here, 
we predicted that the purported similarities in underlying mechanisms would result in significant positive correlations 
among the three decision biases (Hypothesis 3). To investigate these hypotheses, participants completed a probability 
maximization task, a ratio bias task, and a base-rate neglect task while the computer simultaneously recorded decision 
times. Participants also completed an objective measure of numeric competency.

Method
Participants

One hundred seventy-two undergraduates (101 females) at a large Midwestern university participated in this study to 
partially fulfill an introductory psychology course requirement and completed an informed consent at the beginning of 
the session.

Materials and Procedure

All questionnaire materials were presented using MediaLabTM software (Jarvis, 2010). Individually, participants comple­
ted the following decision making tasks in the order presented below along with a mood questionnaire (The Brief Mood 
Introspection Scale; Mayer & Gaschke, 1988), a short form of the Decision Making Inventory (White & Nygren, 2009), 
and a handedness survey. The results of these were not analyzed for this paper. Please see Corser et al., 2024S for exact 
wording for each task.

Probability Matching Task — We used a probability matching problem by Stanovich and West (2008), which read:

Consider the following situation: a die with 4 red faces and 2 green faces will be rolled 6 times. Your 
task is to predict which color (red or green) will show up once the die is rolled. Imagine that you 
will win $1 for each color you correctly predict.

Participants then indicated which color would appear on each of six die rolls (e.g., which color is most likely to show 
up after roll #1? 1 = Red or 2 = Green; . . . which color is most likely to show up after roll #6? 1 = Red or 2 = Green). 
Participants were not told the outcome of their choices.
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Base Rate Task — The base rate problems were borrowed from De Neys and Glumicic (2008). Participants read 
and listened to six passages that provided base rate and biographical information about a randomly selected person. 
For each passage, participants indicated which population group the target person was most likely to belong. In the 
congruent condition, the base rate and biographical information were consistent (e.g., 995 engineers and 5 lawyers; Jack 
is introverted, reads science fiction and writes computer programs). In the incongruent condition, the two pieces of 
information conflicted. Participants read either six congruent or six incongruent passages in a fixed order.

Ratio Bias Task — Modified from Stanovich and West (2008), the instructions to the ratio bias task read:

You will be presented with two trays of red and grey marbles, a large tray that contains 100 marbles 
and a small tray that contains 10 marbles. The marbles are spread in a single layer in each tray. 
Imagine you must draw out one marble (without peeking, of course) from either tray. If you draw 
a red marble, you win a prize. For each problem, select which tray you would prefer to draw from. 
We will select one of the problems and you will actually get to draw a marble from the tray you 
selected to see if you win a prize.

There were “conflict trials” in which the smaller tray was the optimal choice and “no-conflict trials” in which the larger 
tray was the optimal choice, similar to Bonner and Newell (2010). During conflict trials, the base proportions of the 
small tray (i.e., 10%, 20%, or 30%) were pitted against three different, inferior proportions displayed in the large tray: 7, 
8, and 9%; 17, 18, and 19%; 27, 28, and 29%, respectively. For no-conflict trials, the same base proportions of the small 
tray were presented with the following superior proportions displayed in the large tray: 11, 12, and 13%; 21, 22, and 23%; 
31, 32, and 33%, respectively. In total, participants completed 18 trials. The correct answer appeared on each side of the 
screen 50% of the time and the problems were randomly presented. Finally, participants completed a live version of the 
task in which they chose between a 10% chance in the small tray and 9% chance in the large tray. If they selected a 
winning bead they would win one of the three candy bars presented before beginning the task.

Cognitive Ability and Other Measures — Lastly, participants completed Lipkus et al.’s (2001) numeracy scale1 and 
the computerized adaptive version of the Berlin numeracy test (Cokely et al., 2012). Participants also answered some 
demographic questions and reported their standardized American College Testing (ACT) scores if they could recall their 
score (n = 140). 32 students did not provide their ACT scores. Analyses comparing cases with versus without ACT scores 
showed no performance differences in terms of numeracy or any of the three decision biases suggesting data were 
missing completely at random.

Results
Numeracy Measures

As shown in Table 1, the Lipkus scores ranged from 1-10 (M = 6.56; SD = 1.97; Zskew = -2.86), whereas the Berlin 
scores ranged from 1-4 (M = 1.67; SD = 0.85; Zskew = 6.59). Typical of the Lipkus and the Berlin numeracy tests, their 
distributions were negatively and positively skewed, respectively. As suggested by Cokely et al. (2012), we summed the 
scores to obtain a composite numeracy measure that was more normally distributed (M = 8.23; SD = 2.43; Zskew = -1.21). 
The two numeracy tests were also significantly correlated (rSpearman’s = .45, p < .001).

1) Question 4 of the Lipkus numeracy scale (which of the following numbers represents the biggest risk of getting a disease? 1 in 100, 1 in 1,000, or 1 in 10) had 
a typographical error in one of the response options. Instead of presenting a 1 in 10 option, participants saw a 1 in 10,000 option making 1 in 100 the correct 
answer.
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Table 1

Distribution of Numeracy Scores

Score Lipkus Frequency %
ANT

Frequency %
Lipkus + ANT

Frequency %

1 1 .6 90 52.3 0 0.0

2 5 2.9 58 33.7 0 0.0

3 9 5.2 15 8.7 6 3.5

4 12 7.0 9 5.2 8 4.7

5 22 12.8 10 5.8

6 23 13.4 20 11.6

7 37 21.5 21 12.2

8 38 22.1 21 12.2

9 18 10.5 30 17.4

10 7 4.1 22 12.8

11 21 12.2

12 10 5.8

13 2 1.2

14 1 0.6

Total 172 100 172 100 172 100

Probability Matching Task

Participants who predicted “red,” the more probable outcome, for all six die rolls were classified as using the maximizing 
strategy (n = 34, 20%). Participants who predicted some combination of four reds and two greens were coded as using a 
matching strategy (n = 98, 57%). The remaining participants, whose responses did not fit into the previous two groups, 
were labeled as other (n = 40, 23%).

For subsequent analyses, we combined the matching and other strategies into one group and created high and low 
numerate groups based on a median split (i.e., numeracy scores ≥ 8.5 classified as high numerate and < 8.5 classified 
as low numerate). Among the high numerate, 28 out of 86 (32.56%) selected the maximizing strategy, while only 6 
out of the 86 (6.98%) low numerate participants selected the same option. Numeracy scores were, indeed, significantly 
correlated with strategy, r = .35, p < .001. Individuals with higher numeracy scores were more likely to choose the 
maximizing strategy.

Decision Time and Probability Matching

Interestingly, higher levels of numeracy were associated with faster response times for answering the probability 
matching question (r = -0.28, p < .001). At the same time, less time spent on the task was associated with better 
performance (r = -0.33, p < .001). In a logistic regression model, numeracy (b = 0.46, SE = .14, p = .001) and response time2 

(b = -0.33, SE = .09, p < .001) predicted probability maximizing, χ2(2) = 41.27, p < .001, Nagelkerke R 2 = 0.40 (see Table 2, 
Model 1). The effect of numeracy and decision time remained significant even after adding ACT score as a predictor. 
ACT score, in fact, did not predict die roll strategy beyond numeracy (b = .13, SE = .08, p = .14), χ2(1) = 2.36, p = .12 (see 
Table 2, Model 2). Finally, the Numeracy × Decision Time interaction was not significant (b = -0.02, SE = 0.05, p = .65; see 
Table 2, Model 3).

2) A natural log transformation was applied to the response time recorded when deciding to choose red or green for each of the 6 rolls. These transformed 
times were summed to create the overall time spent answering the probability matching problem. Continuous variables were mean-centered before submitting 
them to the regression analysis.
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Table 2

Unstandardized and Standardized Regression Coefficients for Predicting Probability Maximizing

Predictor

Model 1 Model 2 Model 3

b SE p OR b SE p OR b SE p OR
Intercept -2.15 0.36 < .001 -2.20 0.37 < .001 -2.16 0.36 < .001

Numeracy (N) 0.46 0.14 .001 1.59 0.34 0.16 0.03 1.41 0.32 0.16 0.05 1.38

Decision time (D) -0.33 0.09 < .001 0.72 -0.31 0.09 < .001 0.74 -0.28 0.11 0.01 0.76

ACT 0.13 0.08 0.14 1.13 0.12 0.08 0.15 1.13

N × D -0.02 0.05 0.65 0.98

Base Rate Task

Responses to the six base rate questions were coded ‘1’ if they were base rate-consistent and ‘0’ otherwise. The main 
dependent variable was the proportion of correct responses (out of 6). The distributions for the percentage of base-rate 
consistent responses in the congruent and incongruent conditions significantly departed from normality (Congruent: 
Zskew = -12.40, Zkurtosis = 30.02; Incongruent: Zskew = 4.60, Zkurtosis = 0.83). Consequently, we analyzed the data using 
Spearman’s rank order correlation coefficient to examine the relationship between numeracy and base-rate consistent 
responses for each condition. Numeracy was significantly related to the number of base-rate consistent responses in the 
incongruent condition (rs = .27, p = .01), but not the congruent condition (rs = -.02, p = .88).

To examine the effect of numeracy on base rate performance controlling for general aptitude, the proportion 
of correct responses were regressed onto the base rate condition (0 = congruent; 1 = incongruent), mean-centered 
numeracy, and mean-centered ACT scores using PROCESS (Model 3; Hayes, 2017). The overall model was significant, 
F(7,134) = 47.87, p < .001, R 2 = .71. Replicating De Neys and Glumicic (2008), participants selected more base-rate 
consistent responses in the congruent (M = 92%, SD = 15%) versus incongruent condition (M = 28%, SD = 29%), b = -65.36, 
p < .001 (see Table 3).

Table 3

Unstandardized Regression Coefficients for Predicting Base Rate Performance

Predictor b SE p
Intercept 91.09 2.96 < .001

Base rate condition (BR) -65.36 4.20 < .001

ACT -0.54 0.78 .49

Numeracy 0.24 1.29 .85

BR × Numeracy 3.86 1.92 .045

ACT × Numeracy 0.17 0.20 .39

BR × ACT 1.19 1.10 .28

BR × Numeracy × ACT 0.40 0.39 .31

Note. Model R 2 = .71, MSE = 456.80.

In addition, the predicted Numeracy × Base Rate Condition interaction was significant, and indicated that increased 
numeracy predicted greater accuracy for the incongruent trials, but not in the congruent trials. Based on a median-split 
of numeracy, high numerates (M = 35%, SD = 32%, n = 43) selected more base-rate consistent responses than the low 
numerate (M = 20%, SD = 23%, n = 45) in the incongruent condition, while there was no difference between high (M = 
91%, SD = 18%, n = 43) and low numerates (M = 93%, SD = 11%, n = 41) in the congruent condition.
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Decision Time and Base Rate Neglect

Similar to the probability matching data, we examined how numeracy and decision time predicted accuracy on the 
incongruent base rate scenarios. Numeracy was a significant predictor (b = 4.39, SE = .1.42, p = .003), but not response 
time (b = 1.65, SE = 1.18, p = .17) or the interaction term (b = -0.27, SE = .49, p = .59), F(3,84) = 3.52, p = .02, R 2 = .11.

Ratio Bias Task

The ratio bias data were analyzed in two separate regression analyses. Numeracy and ACT scores were entered as 
predictors and the outcome variables were the percentage correct on no-conflict trials (Model 1) and conflict (Model 2) 
trials. Both numeracy (b = 3.65, SE = 1.37, p = .01) and ACT (b = 1.77, SE = 0.80, p = .03) scores independently predicted 
accuracy on conflict trials, F(2, 137) = 15.06, p < .001, R 2 = .18. For no-conflict trials, neither numeracy (b = 1.95, SE = 
1.26, p = .13) nor ACT scores (b = 0.51, SE = 0.73, p = .49) predicted accuracy, F(2, 137) = 3.21, p = .04, R 2 = .05. Similar 
results were obtained for the live choice in which participants decided between a 9% or 10% chance of winning a candy 
bar. Sixty-three out of the 86 high numerate individuals (73%) selected the optimal tray, whereas only 44 out of 84 low 
numerate individuals (52%) selected the optimal tray. Numeracy scores were significantly correlated with choice, r = .25, 
p = .001.3

Decision Time and Ratio Bias

Because numeracy only predicted performance on the conflict trials, we analyzed these trials when examining decision 
time (with natural log transformation applied). Numeracy (b = 4.47, SE = 0.91, p < .001) and decision time (b = 27.69, 
SE = 5.27, p < .001) predicted accuracy independently, F(3, 168) = 22.48, p < .001, R 2 = .29. Unlike the probability 
matching results, increased deliberation as signaled by longer decision times was associated with better performance. 
The Numeracy × Decision Time interaction was not significant, b = -0.40, SE = 2.14, p = .85).

Relationships Among Decision Biases and Cognitive Ability Measures

Performance on the ratio bias, probability matching, and base rate tasks were generally positively correlated. Choosing 
the maximizing strategy was associated with better performance on the ratio bias (rs = 0.36) and incongruent base rate 
problems (rs = 0.38). Meanwhile the relationship between ratio bias and incongruent base rate performance did not quite 
reach statistical significance (rs = 0.21, p = .06). See Table 4 displaying the correlations and statistical significance among 
the cognitive ability measures, the decision tasks and response time.

Numeracy and ACT scores were highly correlated (r = 0.60) with each other, but numeracy predicted performance 
for all three decision biases, whereas ACT scores did not correlate with base-rate performance. This is consistent 
with studies that have found no relationship between standardized test scores (i.e., SAT) and non-causal base rate 
reasoning (Stanovich & West, 1998, 2008). As reported above, when numeracy and ACT scores simultaneously predicted 
performance in a regression analysis, numeracy was the only significant predictor of probability matching and base rate 
performance. For ratio bias problems, ACT and numeracy independently predicted performance.

Additional Analyses

Because the nature and design of the classic decision tasks are inherently different, direct comparisons are difficult. In 
an effort to increase the commonalities between the tasks, the ratio bias data was reanalyzed while isolating the first 
conflict trial, and the base rate data was reanalyzed by selecting only participants who completed incongruent trials and 
isolating the first trial.

Base Rate Neglect — A total of 88 participants completed the incongruent base rate trials. Their responses on the 
first base rate scenario were coded as base rate consistent (1) or base rate inconsistent (0). Because the outcome was a 
dichotomous response, the responses were entered as the outcome in a logistic regression. All predictor variables were 
again mean centered prior to analysis. First, participant numeracy was entered as a predictor in the analysis. Neither the 

3) Two participants’ choices were not recorded, reducing the sample to 170.
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overall model, χ2(1, N = 88) = 0.962, p = .327, Nagelkerke R 2 = 0.017; nor numeracy within the model, B = 0.115, Wald(1) = 
0.942, p = .332, OR = 1.122, were significant predictors of choice. To remain consistent with the original models analyzed 
above, we also entered in overall ACT score as a predictor. Within the participants who received the inconsistent base 
rate scenarios, 19 participants did not disclose their ACT score, leaving a total of 69 participants for this analysis. Again, 
the overall logistic model, χ2(2, N = 69) = 1.440, p = .487, Nagelkerke R 2 = 0.031 was not a significant predictor of choice. 
Within the model, neither numeracy, B = 0.176, Wald(1) = 1.241, p = .265, OR = 1.193 nor ACT score, B = -0.019, Wald(1) 
= 0.053, p = .817, OR = 0.981, were significant. Finally, the influence of decision time and numeracy were entered as 
predictors of choice. This overall model did significantly predict choice compared to a constant alone model, χ2(2, N = 
88) = 17.836, p < .001, Nagelkerke R 2 = 0.279. Within this analysis, decision time was a significant predictor of choice 
B = 1.788, Wald(1) = 12.374, p < .001, OR = 5.977 with longer decision times leading to more optimal choices. Numeracy, 
however, was not significant, B = 0.237, Wald(1) = 3.109, p = .078, OR = 1.267.

Ratio Bias — The original format of the ratio bias stimuli randomly presented participants with both conflict and no 
conflict trials. The first conflict trial that a participant experienced was isolated and entered into an analysis, predicting 
optimal jar selection (1) or not (0). As with previous analyses, all predictor variables were mean centered prior to 
analysis. The overall model significantly predicted choice compared to the constant alone model, χ2(1, N = 172) = 10.354, 
p = .001, Nagelkerke R 2 = 0.078. Within the model, numeracy significantly predicted jar choice, B = 0.211, Wald(1) = 
9.672, p = .002, OR = 1.235. To maintain consistency, ACT score was also entered into the analysis. Within this analysis, 
32 participants failed to provide their ACT scores, leaving a total of 140 participants for the analysis. Here, the overall 
model remained statistically predictive of jar choice compared to a constant alone model, χ2(2, N = 140) = 7.742, p = .021, 
Nagelkerke R 2 = 0.073, but numeracy dropped to marginal, B = 0.177, Wald(1) = 3.637, p = .056, OR = 1.194, while ACT 
was not a significant predictor, B = 0.025, Wald(1) = 0.214, p = .643, OR = 1.025. Finally, numeracy and decision time were 
entered as predictors of choice. The overall model statistically predicted jar choice compared to a constant alone model, 
χ2(2, N = 172) = 12.247, p = .002, Nagelkerke R 2 = 0.092. Within the model, numeracy statistically predicted choice, B = 
0.211, Wald(1) = 9.527, p = .002, OR = 1.235, but decision time did not predict choice in the model, B = 0.289, Wald(1) = 
1.863, p = 0.172, OR = 1.335.

Table 4

Intercorrelations for Cognitive Ability Measures, Decision Tasks, and Response Time (RT)

Measure 1 2 3 4 5 6 7 8

1. Numeracy – 0.60** 0.27* 0.40** 0.35** -0.17 0.21** -0.28**

2. ACT – 0.16 0.37** 0.38** -0.41** 0.07 -0.38**

3. Base-rate accuracy

(% correct incongruent trials)

– 0.21† 0.38** 0.15 0.04 -0.10

4. Ratio bias

(% correct conflict trials)

– 0.36** -0.05 0.40** -0.19*

5. Probability matching – -0.15 0.03 -0.33**

6. Base-rate RT (incongruent trials) – 0.19† 0.41**

7. Ratio bias RT (conflict trials) – 0.23**

8. Probability matching RT –

N per measure 172 140 88 172 172 88 172 172

M 8.23 22.88 27.65 66.47 0.20 49.13 8.17 46.19

SD 2.43 4.20 4.01 33.29 0.40 2.54 0.43 3.69

Note. Distributions for Variables 3, 4, and 6 were non-normal therefore Spearman rho correlation coefficients reported in italics; the remaining are 
Pearson correlation coefficients. Matching is a dichotomous variable 0 = matching, 1 = maximizing.
†p < .10. *p < .05. **p < .01.
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Relationships Among Decision Biases and Cognitive Ability Measures — Similar to the above analyses, the 
performance on the first incongruent base rate trial, the performance on the first conflict ratio-bias trial, performance 
on the probability matching task, ACT score, numeracy score, and response times were correlated to investigate possible 
relationships between the tasks, see Table 5.

Table 5

Intercorrelations for Cognitive Ability Measures, Decision Tasks, and Response Time (RT) Limited to the First Inconsistent Base-Rate and Ratio-Bias Trials

Measure 1 2 3 4 5 6 7 8

1. Numeracy – .60** .10 .24** .35** -.15 .03 -.28**

2. ACT – .05 .17* .38** -.39** -.07 -.38**

3. Base-rate accuracy (first incongruent trial) – -.02 .20 .40** -.15 .04

4. Ratio bias (first conflict trial) – .25** .030 .11 -.22**

5. Probability matching – – .00 -.33**

6. Base-rate RT (first incongruent trial) – .03 .17

7. Ratio bias RT (first conflict trial) – .12

8. Probability matching RT –

N per measure 172 140 (69) 88 172 172 88 172 172

M 8.23 22.88 0.23 0.57 0.20 8.64 8.99 46.19

SD 2.43 4.20 0.42 0.50 0.40 0.69 0.76 3.69

Note. Distributions for variables 3, 4, and 6 were non-normal therefore Spearman rho correlation coefficients reported in italics; the remaining are 
Pearson correlation coefficients. Matching is a dichotomous variable 0 = matching, 1 = maximizing. (N) corresponds to the reduction in participants 
for the inconsistent base-rate condition.
†p < .10. *p < .05. **p < .01.

Discussion
With the analysis of the full data set, numeracy and decision time both predicted accuracy on the ratio bias and 
probability maximizing tasks, while only numeracy predicted base rate performance. Contrary to our second hypothesis, 
shorter decision times were associated with accuracy on the probability matching task. One reason why decision time 
and accuracy may be negatively correlated for probability maximizing is that for those who possess the knowledge or 
mindware (i.e., understanding the independence of successive trials; Gal & Baron, 1996) the task becomes quite easy and 
requires choosing the most probable outcome. For the ratio bias, having the mindware (i.e., knowing how to convert 
frequency information into percentages by attending to the numerator and denominator) is necessary, but not sufficient. 
Participants also require extra time to compute or compare the probabilities (generally small differences between jars) 
engaging in sustained inhibition or cognitive decoupling as theorized by Stanovich and West (2008). In the probability 
maximizing problem, it is sufficient to have the mindware without precise calculations.

When isolating the first incongruent trial of the base rate task and the first conflict trial of the ratio-bias task, a 
slightly different pattern emerged. Within the base-rate task, only decision time significantly predicted performance. 
While only numeracy predicted performance in the ratio-bias task. The differing patterns observed could be the result 
of several factors. First, the base-rate task was presented between subjects, so isolating the incongruent trials effectively 
reduced the sample size and power of this analysis. Alternatively, recent research suggests that participant behavior 
can change throughout repeated trials of a task (Li et al., 2022). If mindware instantiation reflects the automatization of 
the specific process as suggested by other recent research, the differences between the first task and overall averages 
could reflect the acquisition of this mindware (Raoelison et al., 2021). The results from this study seem to align with the 
more recent conceptualizations of dual process theories wherein intuition can lead to optimal decision, especially if the 
mindware is present. Future studies should investigate the differences in decision time and performance across several 
decisions as well as investigating the impact of numeracy within a two-response paradigm.
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Study 2
We conducted a second study to test the robustness of our findings especially with respect to probability maximizing 
and decision time. Additionally, participants answered a variation of Kahneman and Tversky’s (1982) squash decision 
scenario that tested statistical intuitions about sample size. The scenario substituted squash for table tennis and read:

A game of table tennis can be played either to 9 or 15 points. Holding all other rules of the game 
constant, if player A is better than player B, which scoring system will give A a better chance of 
winning?

Participants then selected which scoring system would best benefit the better player: a) a game to 9 points, b) a game to 
15 points, or c) neither scoring system matters. Like the probability maximizing scenario, the squash scenario involves 
reasoning about probability distributions and how large samples are less likely to yield atypical outcomes. Therefore, 
in the long run, it is better to choose the more probable outcome or have the skilled player play a longer match. We 
predicted that numeracy would be positively associated with accuracy in the squash scenario, and accuracy would be 
negatively related to decision time. For those possessing the mindware or correct statistical intuitions, we expected that 
they would arrive at the answer more quickly than those who do not or those who fail to apply their understanding of 
large samples.

Method
Participants

376 undergraduate students from both a midsized southern private university and a midsized midwestern regional 
public university completed the research for partial course credit. Of these participants, 203 identified as female, 165 
identified as male, and the remaining identified as nonbinary or wished not to disclose. Participants completed the study 
online and provided their consent electronically prior to completing the material. An additional 5 individuals accessed 
the survey but did not complete enough measures for analysis.

Materials and Procedure

Participants completed the study online using the Qualtrics survey platform. The study consisted of three types of 
decision scenarios. The first type was the same probability matching task with all six decisions presented on one page 
(instead of sequentially like Study 1). The second type presented two base rate scenarios (one incongruent and one 
congruent in a counterbalanced order) from Study 1. The last type was the squash/table tennis scenario from Kahneman 
and Tversky (1982). Finally, participants completed an eight-item objective numeracy scale (Weller et al., 2013) and 
demographic questions.

Results
Numeracy

Numerical ability was negatively skewed in this sample with a mean score of 5.02 (SD = 2.18) and median of 5. Applying 
a median split, we labeled participants scoring 5 or less as lower numerate (n = 198) and the remaining as higher 
numerate (n = 178). See Table 6.

Probability Matching

A higher proportion of participants choose the maximizing strategy (n = 175, 46.5%) compared to Study 1. Again 
however, the majority of participants did not choose this optimal strategy, showing either a matching (n = 143, 38%) 
or alternate strategy (n = 58, 15.4%). As in Study 1, we combined the matching and alternate strategies into one group. 
There was a significant relationship between dichotomized numeracy and strategy choice, χ2(1, N = 376) = 95.34, p < 
.001. Specifically, among the high numerate, 130 out of 178 (73%) selected the maximizing strategy, while only 45 out of 
the 198 (22.7%) low numerate participants selected the same option.
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As in Study 1, the data was also examined using continuous numeracy. Numeracy scores were positively correlated 
with the optimal strategy, r = .525, p < .001 (see Table 7). Higher levels of numeracy were also associated with faster 
response times for answering the probability matching question (r = -0.154, p < .001). At the same time, less time spent 
on the task was associated with better performance (r = -0.232, p < .001).

Table 7

Intercorrelations for Numeracy, Decision Tasks, and Response Time (RT)

Measure 1 2 3 4 5 6 7 8 9

1. Numeracy – 0.525** .194** .191** .208** -.154** -.123* 0.067 -0.069

2. Matching – .012 .182** .280** -.232** -.123* -.031 -0.101*

3. Base-rate Accuracy (Congruent) – .026 .116* -.030 -.010 -.018 .033

4. Base-rate Accuracy (Incongruent) – .144** -.070 -.037 .037 -.048

5. Sample Size Neglect – -.103* -.094† -.052 -.139**

6. Matching RT – .589** .461** .601**

7. BR RT (Incongruent) – .505** .543**

8. BR RT (Congruent) – .456**

9. Sample Size Neglect RT –

M 5.02 0.47 0.90 0.41 0.35 3.58 3.19 2.78 3.18

SD 2.18 0.50 0.30 0.49 0.48 0.63 0.59 0.62 0.74

Note. N = 376. A natural log transformation was applied to all reaction time measures and descriptives for these transformed variables are shown.
†p < .10. *p < .05. **p < .01.

Finally, numeracy, response time, and the interaction were entered into a logistic regression model predicting strategy. 
Overall, the model significantly predicted strategy use beyond a constant alone model, χ2(3, N = 376) = 129.75, p < .001, 
Nagelkerke R 2 = 0.40. Within the logistic regression model, the main effects of numeracy (b = 0.61, SE = .07, Wald χ2(1) 
= 76.55, p < .001, OR = 1.84) and response time (b = -0.68, SE = .22, Wald χ2(1) = 9.95, p = .002, OR = 0.51) predicted 
probability maximizing., The interaction term, however, was not significant, (b = -0.04, SE = .12, Wald χ2(1) = 0.12, p = 
.73, OR = 0.96).

Base Rate

Also replicating Study 1, high numerates were more likely to select the base rate consistent response (86 out of 178; 
48.3%) than low numerates (67 out of 198; 33.8%) during incongruent trials, χ2(1, N = 376) = 8.14, p = .004. During 

Table 6

Distribution of Numeracy Scores in Study 2

Numeracy Score n %

0 6 1.6

1 21 5.6

2 29 7.7

3 49 13.0

4 43 11.4

5 50 13.3

6 55 14.6

7 74 19.7

8 49 13.0
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congruent trials, the majority of both high numerates (168 out of 178; 94.4%) and low numerates (170 out of 198; 85.9%) 
selected the base rate consistent response, though numeracy was still significantly related to selection, χ2(1, N = 376) 
= 7.50, p = .006. As with previous tasks, the various bivariate correlations were also investigated. While specifically 
focusing on incongruent trials, numeracy score was significantly correlated with base rate consistent responses, r(376) = 
0.191, p < .001, and response time, r(376) = -0.123, p = .017. The relationship between base rate consistent responses and 
response time, however, was not significant, r(376) = -0.037, p = .477. When specifically investigating congruent trials, 
numeracy was also significantly correlated with base rate consistent responses, r(376) = 0.194, p < .001, but was not 
related to response time, r(376) = 0.067, p = .198. Base rate consistent response and response time were also unrelated, 
r(376) = -0.018, p = .733.

Finally, a series of logistic regression models were calculated to investigate the impact of numeracy and response 
time on predicting choices within each type of base rate task. When investigating incongruent trials, the overall model 
was statistically better at predicting choice than the constant alone model, χ2(3, N = 376) = 15.15, p = .002, Nagelkerke 
R 2 = 0.053. Within the model, only numeracy significantly contributed to the model, Wald χ2(1) = 12.71, p = < .01, OR = 
1.20. Neither response time, Wald χ2(1) = 0.05, p = .82, OR = 0.96, nor the interaction, Wald χ2(1, N = 376) = 1.00, p = 
.317, OR = 1.09 significantly contributed to the model. When investigating congruent trials, the overall model was also 
statistically better at predicting choice than a constant model alone, χ2(3, N = 376) = 17.62, p < .001, Nagelkerke R 2 = 
0.095. Within the model, centered numeracy again significantly predicted choice, χ2(1, N = 376) = 13.62, p = < .001, OR = 
1.36. Neither response time, χ2(1, N = 376) = 2.17, p = .14, OR = 0.66, nor the interaction, χ2(1, N = 376) = 3.71, p = .054, 
OR = 0.82 significantly predicted choice.

Sample Size Neglect

Participants were asked to select which scoring system would benefit the better player during a game of table tennis. 
27.66% of participants (104 out of 376) selected the 9-point game, 34.84% chose the optimal solution of 15 points (131 
out of 376), while the remaining 37.5% (141 out of 376) said neither point system mattered. As in the probability 
maximization problem, the non-optimal solutions were merged to form a single group and were then compared to 
dichotomous numeracy. Numeracy was significantly related to optimal choices in the task, χ2(1, N = 376) = 15.20, p 
< .001. Specifically, 44.94% of high numerates (80 out of 178) selected the optimal choice while only 25.76% of low 
numerates did so (51 out of 198).

Investigating the bivariate correlations revealed that numeracy was related to optimal choice in the task, r(374) = 
0.208, p < .001. Response time was also related to optimal choice within the task, r(374) = -0.139, p = .007. Numeracy and 
response time, however, were unrelated, r(374) = -0.069, p = .181.

Finally, the impact of numeracy and response time on choice were analyzed using a binary logistic regression. 
Overall, the model significantly predicted choice above chance levels, χ2(3, N = 376) = 23.57, p < .001, Nagelkerke R 2 = 
0.084. Within the model, numeracy, Wald χ2(1) = 14.16, p < .001, OR = 1.23, and response time, Wald χ2(1) = 6.33, p = .012, 
OR = 0.66 both significantly contributed to the model. The interaction, however, was not significant, Wald χ2(1) = 0.152, 
p = .696, OR = 0.972.

Discussion
Largely, the results of Study 2 mirrored those of Study 1. Specifically, higher numeracy was related to improved 
performance across both the probability maximization and base rate tasks. Extending this line of work, higher numeracy 
was also related to increased performance on the sample size neglect task. Also consistent with Study 1, the response 
time was related to performance within the probability maximization task, with quicker responses showing increased 
probability maximization, but not the base rate task. Interestingly, the sample size neglect problem showed a similar 
relationship, with quicker response times being related to more optimal choices.

When investigating the relationships between numeracy and response time, there was a significant relationship in 
the probability maximization and base-rate incongruent tasks, but not in the base-rate congruent task or sample size 
neglect task. The former was expected due to no conflict in the congruent base-rate problem, while the latter was 
slightly more surprising, but the task differences between the probability maximizing and sample size problems likely 
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explain these differences. The non-significant relationship between numeracy and decision time during the sample size 
problem could reflect that it takes a similar amount of time to apply the incorrect solution for low numerates as it takes 
for high numerates to apply the correct solution. With everyone having to make one decision, it becomes less surprising 
that numeracy was not related to decision time for this problem. In contrast, the negative correlation between numeracy 
and decision time on the probability maximization problem could be due to high numerates knowing they should 
always choose red (or the more probable outcome each time), which essentially simplifies the decision-making process 
making it one decision versus six sequential decisions. Low numerates who do not retrieve the correct solution try an 
alternative strategy requiring them to spend extra time on each of the six rolls as they expect the outcome to somehow 
match the overall proportions (66.67% red; 33.33% green). These differences between the probability maximization and 
sample size problem help explain why numeracy would be predictive of decision time in one context but not the other. 
As with study 1, future research should look to investigate these tasks within a two-response paradigm to determine if 
the quicker decision times are related to improved intuitions.

General Discussion
Higher levels of numeric competency were associated with more optimum solutions across all four decision tasks 
confirming Hypothesis 1. We found new relationships among numeracy, probability maximization, and sample size 
neglect. Replicating previous research, we found a positive relationship between numeracy and performance on the base 
rate (Obrecht & Chesney, 2016) and ratio bias tasks (Liberali et al., 2012; Peters et al., 2006). We also found support for 
Hypothesis 3 predicting performance across the different decision tasks was positively correlated.

There was mixed support for Hypothesis 2, which predicted a positive relationship between decision time and 
normative performance. The hypothesis held true for the ratio bias conflict trials with longer decision times associated 
with more optimal responding. No significant relationship was found between decision time and accuracy for the 
base rate scenarios. In contrast, decision time was inversely related to performance on the probability matching and 
sample neglect scenarios. Together these results show that individuals with higher levels of numeric competency are 
more likely to possess the mindware necessary to answer these questions correctly and require less time to deploy 
this knowledge. For ratio bias problems, accuracy depends on having the necessary mindware and performing the 
calculations. It makes sense that higher accuracy should be achieved by those who take more time to compare the two 
ratios and this is particularly likely among the high numerate. For base rate problems, the decision time to arrive at an 
answer is likely similar regardless of whether participants rely more on the base rate or stereotypic information. But it is 
the high numerates who are more likely to use the base rate versus stereotypic information compared to less numerate 
individuals.

As described above, the differences in decision times and correlations between tasks can be easily explained by 
the different decisions made between high and low numerates within each situation, however, potential alternate 
explanations must also be discussed. As each task did seem to show a slightly different pattern, it could indicate that 
numeracy relates to several different potential mechanisms. First, it’s possible that each task requires different special­
ized mindware. The relationship between numeracy and optimal choices could then emerge because high numerates are 
more likely to possess the correct mindware for the tasks. The differences in decision times then could be the result 
of differences in the actual processing time required by the specific mindware used for each problem (Stanovich, 2016; 
Stanovich et al., 2011). It’s also possible that the automatization of the mindware could lead to reduced decision times 
and more optimal intuitions. Future research should investigate these possibilities.

Though some researchers question the veracity of dual-process accounts of reasoning (Keren & Schul, 2009; 
Kruglanski & Gigerenzer, 2011; Osman, 2004), the overwhelming depth of previous evidence for this approach at 
minimum warrants discussion as a possible mechanism. The traditional System 1 vs System 2 account often emphasizes 
the quick nature of System 1 processing vs the more deliberate thinking of System 2. This theory would seem to imply 
that quicker response time would be related to System 1 processing while longer response times would be related to 
System 2 processing. However, in the conceptualization provided by Evans and Stanovich (2013), the only thing that is 
required for a System 2 process (referred to as a Type 2 process in this clarified theory) is the involvement of working 
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memory, the possibility for mental simulation, and the ability to cognitively decouple. This difference may seem quite 
minute, but it actually provides an important distinction between the theory and traditional understanding. Specifically, 
this theory allows for the distinction that some Type 1 processes may in fact be longer than a Type 2 response, even if it 
is less likely, and that both Type 1 and 2 systems are capable of “rational” thought.

Leading directly from these theories, one such dual-process account that offers an interesting explanation of the 
effects, and could easily be tested, argues that each process relies on a different strategy type, which in turn accounts for 
the differences in performance and decision times (Markovits et al., 2021). An interesting prediction that can be drawn 
from this theory is that repeated exposure to similar problems results in the automatization of the process and thus a 
quicker response time, which seems to be in line with other work in cognitive psychology arguing that experts often 
rely on intuition/heuristic based processing (Cokely et al., 2018; Kahneman & Klein, 2009).

To investigate potential mechanisms, future research could be conducted to differentiate between these possible 
explanations. For example, a study could be devised that involved participants completing several trials of a completely 
novel task, such as completing mathematical operations and making decisions in a system other than base 10. This 
would ensure that participants come into the task with no preestablished understanding. In this case, each theory would 
predict different patterns of results. The mindware account would predict that individuals do not possess the mindware 
to solve the problem, and thus we should see no differences between high and low numerates. If a difference did 
develop while completing the task, we would expect to see a sharp increase in performance after participants acquired 
the correct mindware. The traditional System 1 vs System 2 account would predict higher numerates would be more 
likely to rely on System 2 processing and would thus take longer to answer the novel decisions. Finally, the dual 
process-strategy account would predict that participants would show a gradual improvement in the decision task and 
a gradually decreased response time as exposure to the tasks would lead to a gradual automatization. Another future 
study that could help to illuminate the results would be to conduct a similar study to the one presented above, while 
providing participants with a time pressure while answering the questions in an attempt to experimentally force a quick 
answer to highlight the differences in mindware between high and low numerates.

Overall, the present work shows the robustness of the relationship between numeracy and some decision biases. 
It also shows that deliberation time can be positively or negatively related to normative decision making as well as 
completely unrelated. These findings should encourage others to examine numeracy and decision time simultaneously 
as they often independently predict performance and may offer their own insight into the mechanisms of numeracy and 
decision making.
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