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Abstract
Numeracy, as measured by performance on the non-symbolic numerical comparison task, is a key construct in numerical and mathematical
cognition. The current study examines individual variation in performance on the numerical comparison task. We contrast the hypothesis
that performance on the numerical comparison task is primarily due to more accurate representations of numbers with the hypothesis that
performance dependent on decision-making factors. We present data from two behavioral experiments and a mathematical model. In both
behavioral experiments we measure the precision of participant’s numerical value representation using a free response estimation task.
Taken together, results suggest that individual variation in numerical comparison performance is not predicted by variation in the precision
of participants’ numerical value representation.
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Learners’ performance on non-symbolic numerical comparison tasks is used to define the learner’s numeracy,
a key construct in research on numerical cognition and early math learning (e.g., Feigenson, Dehaene, Spelke,
Feigenson, & Spelke, 2004; Libertus, Feigenson, & Halberda, 2013; Lukowski et al., 2017). Though the non-
symbolic numerical comparison task plays a central role in the study of numerical cognition, there is not a com-
prehensive characterization of the processes involved in completing the task. Many variations of the numerical
comparison task exist. The task typically involves a forced choice comparison between two numerical values
that are displayed as a set of shapes on a screen. The participant then indicates which set is larger without
counting. The non-symbolic numerical comparison task has been adapted for a wide range of participants in-
cluding pre-literate children and infants (e.g., Halberda & Feigenson, 2008; Xu & Spelke, 2000), human popula-
tions without formal number systems (Pica, Lemer, Izard, & Dehaene, 2004), and non-human primates (An-
dreas Nieder & Merten, 2007; Brannon & Terrace, 2000).

Characterization of the cognitive processes involved in completing the numerical comparison task is essential
for theory and application and will contribute to an explanation of variation in learner’s numerical comparison
ability. Additionally, it will help researchers to determine why performance on numerical comparison correlates
with performance on other mathematical tasks and make principled predictions about this relation comes about.
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The non-symbolic comparison task has been used as a predictor of mathematical outcomes. Children's per-
formance on the numerical comparison task predicts performance on symbolic arithmetic tasks and standar-
dized math assessments (Chen & Li, 2014; Gilmore, McCarthy, & Spelke, 2010) and training with non-symbolic
comparison leads to improvement on symbolic tasks (Park & Brannon, 2013, 2014; Ramani, Jaeggi, Daubert, &
Buschkuehl, 2017). Learners’ performance on a non-symbolic comparison task predicts later performance on
symbolic arithmetic tasks (Libertus, Feigenson, & Halberda, 2011) and later educational outcomes (Mazzocco,
Feigenson, & Halberda, 2011). Since non-symbolic numerical comparison performance is associated with child-
ren’s performance on other mathematical tasks a characterization of the cognitive processes may also be lever-
aged to develop improved interventions for poor mathematical performance.

Cognitive processes and representations that may contribute to performance include executive functioning and
inhibition (Cragg & Gilmore, 2014; Gilmore et al., 2013; Gilmore, Keeble, Richardson, & Cragg, 2017), visuo-
spatial processes (Crollen, Collignon, & Noël, 2017),the mental number line (Moeller, Neuburger, Kaufmann,
Landerl, & Nuerk, 2009), neural tuning curves (Prather, 2014), decision making evidence accumulation (e.g.,
Purcell et al., 2010), amongst others. In the current study, we attempt to move towards a more comprehensive
characterization of the processes involved while acknowledging that any progress made will undoubtedly still
be incomplete and require further work.

The Current Study Approach

The current study includes two behavioral experiments and a mathematical model of the non-symbolic numeri-
cal comparison and non-symbolic numerical estimation tasks. Our approach assumes that participants have a
mechanism for representing relative values that can be used in completing these numerical tasks. We focus on
value representation that may be constructed from a combination of numerical and non-numerical information
in order to make accurate and ecologically valid conclusions. Participants’ use of non-numerical information on
numerical tasks is supported by prior work (e.g., Cohen Kadosh, Cohen Kadosh, & Henik, 2008; Van Opstal &
Verguts, 2013; Walsh, 2003), and participants’ representation of value is not limited to numerical tasks. Any
task in which assessing relative values is useful may involve value representation, such as decision-making
tasks (e.g., Behrens, Woolrich, Walton, & Rushworth, 2007; Rangel, Camerer, & Montague, 2008; Sugrue,
Corrado, & Newsome, 2005), and reward processing (e.g., Gottfried, O’Doherty, & Dolan, 2003; Silvetti,
Seurinck, & Verguts, 2011). While there has been some interest in defining a “pure” number sense the primary
concern in the current study is to evaluate how participants construct the relative values in completing number
tasks regardless of the perceptual information used.

We evaluate evidence for two cognitive processes, precision of number representation and decision-making
threshold, which may contribute to completing the numerical comparison task. Both are characterized at an al-
gorithmic level of analysis (Marr, 1982) using a combination of behavioral experimentation and mathematical
modeling. The goal is to create a reproducible formal model of variation in the cognitive processes and behav-
ior relevant to numerical comparison. We consider the hypothesis that the precision of number value represen-
tation is the primary driver of individual variation in numerical comparison performance (Prather, 2014), where
more precise representations are associated with better performance. Learners have some internal representa-
tion of number values, be it via neural tuning curves (e.g., Nieder, Freedman, & Miller, 2002; Prather, 2012) or
an internal space-to-number mapping such as the mental number line (e.g., Siegler & Opfer, 2003), in which
numbers are represented as relative spatial positions, similar to a physical number line.
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Learners with a more precise representation of number values are better able to make distinctions between nu-
merical stimuli and answer correctly on a number comparison task (e.g., Prather, 2014). We model number rep-
resentation as neural tuning curves associated with numbers as reported in both non-human primates and hu-
mans (e.g., Moskaleva & Nieder, 2014; Nieder & Dehaene, 2009). The precision hypothesis is consistent with
prior mathematical modeling work that demonstrates how increases in the precision of neural coding are asso-
ciated with improved performance on numerical tasks (DeWind & Brannon, 2012; Prather, 2012).

We also consider the hypothesis that individual differences in numerical comparison task performance are pri-
marily due to variation in decision-making threshold, independent of numerical representation. Variations in
thresholds for evidence accumulation contribute to performance in perceptual decision-making tasks
(Busemeyer & Townsend, 1993; Pleskac & Busemeyer, 2010; Purcell et al., 2010). The numerical comparison
task can be framed simply as a version of perceptual decision-making task in which numerical information is
relevant.

We do not assume the Precision and Decision processes to be mutually exclusive. The current study evaluates
the degree to which these two processes account for behavioral data across two numerical tasks. The behavio-
ral experiments examine the relation between participants’ accuracy and precision of number estimation as it
relates to numerical comparison (e.g., Libertus et al., 2016). We draw on recent work that focuses on compari-
sons between performance on non-symbolic numerical comparison and free response non-symbolic estima-
tions (Castronovo & Göbel, 2012; Chesney, Bjalkebring, & Peters, 2015; Guillaume, Gevers, & Content, 2016;
Libertus, Odic, Feigenson, & Halberda, 2016). For the free response estimation task, participants are shown a
set of objects and asked to estimate how many there are.

Across two experiments we combine behavioral and modeling data to examine the possibility that variation in
numerical comparison performance is driven primarily by individual differences in the precision of numerical
representations. We also consider the possibility that variation in numerical comparison is primarily driven by
variation in the decision-making processes and not representations of number value. There is mixed evidence
in prior work regarding the relationship between numerical comparison and estimation task performance. In
some cases, no relationship between numerical comparison accuracy and estimation accuracy is found
(Guillaume et al., 2016; Pinheiro-Chagas et al., 2014), in others a small positive correlation was reported
(Chesney et al., 2015). In other studies a significant relationship between estimation variability and number
comparison was found, but not between estimation accuracy and number comparison (Libertus et al., 2016).

In addition to estimation accuracy, we calculated the variation of participants’ estimates, e.g., the precision
(Izard & Dehaene, 2008). A participant could have very precise estimates while being overall inaccurate. That
participant would perform poorly on free response estimation accuracy but perform well on numerical compari-
son. Such as a participant who tends to estimate 50 dots as about 150 dots has high precision but low accura-
cy on the estimation task. Precise, but not necessarily accurate performance, should primarily rely on the preci-
sion of number value representation. If a participant overestimated values on the estimation task, that partici-
pant could still perform well in numerical comparison. For any two values, 20 and 22, increasing both values to
30 and 35, does not necessarily change their relative values. Participants’ estimation error need not be a con-
stant proportion for estimation precision and comparison performance to be unrelated.

If the variation in participants’ performance is primarily due to variation in the precision of their numerical repre-
sentations we expect a strong correlation between accuracy on the comparison task and estimation precision in
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the estimation task. If individual differences are due to variation in decision-making thresholds, we would not
expect a significant correlation between accuracy on the comparison task and estimation precision. Numerical
representation precision may not be all that there is to the estimation task or comparison task. The participant
must map their internal representation of the stimuli to an output. In the case of the estimation task, the output
is a specific cardinal value. For each participant, the model will fit their performance on the comparison and
estimation tasks simultaneously. The question to be examined is if how well adjustments to the neural repre-
sentation precisions fit participants’ data relative to the fit when decision-making parameters are also adjusted.
Does including a decision-making evidence parameter significantly improve model fit to participant’s data one
or both tasks?

Behavioral Experiments

Experiment 1

Method

Participants — Participants (N = 71) were adults (age range from 19 to 70, median 32) recruited online
through Amazon Mechanical Turk. Protocols were approved by a university Internal Review Board.

Numerical comparison task — Stimuli were 96 visually presented pairs of square arrays with a midline sepa-
rator. Shape arrays ranged in number from 23 to 111 (see the Appendix). The difference between the two val-
ues being compared ranged from a ratio of 1.05 to 1.36. Stimuli were balanced for total area, and size of the
largest square. The location of the squares was randomly selected before the experiment. Participants were
instructed to indicate which side contained more shapes via button press. Stimuli were displayed for 2 seconds
after which the screen was blank. There was no response time limit; participants were instructed to respond as
quickly as possible.

Free response estimation — Stimuli were 64 visually presented shape arrays. The number of objects ranged
from 23 to 111 (see Appendix). Participants were instructed to respond with an estimate of how many shapes
were in the display. The stimuli were displayed for 2 seconds after which the participants were presented with a
prompt to type their response. There was no response time limit.

Results

Performance on the numerical comparison task — Participants’ performance was calculated as the number
of correct responses on the task. Performance ranged from 32% to 84% correct. For the remaining analysis, we
only consider participants with performance statistically above chance (58%) on the numerical comparison task
(n = 53). For this subset of participants’ median performance on the task is 69% correct. Age ranged from 19 to
70 with a median of 31. Given the regression analysis to be performed 53 participants is sufficient for the ex-
pected medium effect size (d = 0.38, power = 0.81).

Free response estimation — Participants’ performance was calculated using the deviations between the par-
ticipants' response and the actual number of shapes displayed. Participants' mean deviation ranged from 7.78
to 44.51 with a median of 17.33. Deviations can also be calculated in terms of proportions (e.g., a response of
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50 when 40 items were displayed would be a deviation of 0.25). Participants' mean deviation in terms of pro-
portion difference ranged from 0.125 to 0.811 with a median of 0.255.

We also calculated the variation in participants’ responses, separately from accuracy (Figure 1). The stimuli in
this task included multiple stimuli with the same number of objects in different configurations. This allows us to
evaluate how consistent participants’ estimations for the eight target values. Participant’s precision score was
the average coefficient of variation across the eight target values. Participants’ precision scores ranged from
0.09 to 0.42 with a median of 0.17. Precision and accuracy scores were not significantly correlated where in-
creased precision was associated with higher accuracy, r(51) = .21, p = .13.

The relationship between numerical comparison and estimation tasks — We evaluated the relationship
between participants' behavior on the two tasks using a linear regression with estimation deviation (e.g., accu-
racy), estimation precision, and participant age in predicting numerical comparison (Figure 2). Neither estima-
tion deviation nor estimation precision significantly predicted numerical comparison score (Table 1).

Table 1

Results for a Linear Regression Using Participant Scores for Estimation Accuracy and Estimation Precision to Predict Numerical
Comparison Task Score

Independent Variable B 95% CI t(45) p d

Estimation Accuracy -0.04 [-0.03, 0.04] 0.32 .753 0.15
Estimation Precision 0.14 [-0.85, 0.53] 0.44 .647 0.06
Age 0.58 [-0.21, 1.38] 1.47 .147 0.11
Accuracy*Precision -0.01 [-0.03, 0.01] 0.85 .397 0.28
Precision*Age -0.82 [-2.09, 0.45] 1.29 .201 0.48
Accuracy*Age -0.03 [-0.08, 0.01] 1.67 .101 0.80
Accuracy*Precision*Age 0.02 [-0.04, 0.09] 0.77 .440 0.23

Figure 1. Graph of participants' performance on the estimation task by the Precision and Accuracy measures.

Note. Each dot represents one participant.
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The data suggest that there is not a strong relationship between non-symbolic numerical comparison perform-
ance and the precision of participants' numerical representations. A Bayes factor analysis suggests evidence
for the null hypothesis, BF = 0.126 for the regression model with Estimation Accuracy and Precision as predic-
tors.

Figure 2. Scatter plot of participants’ scores on the numerical comparison task (ANS Score) and their free estimation task
precision score.

Note. Estimation precision was calculated as the mean variation in estimation for the target value expressed as a ratio of
that value. Larger values represent less consistent estimation responses.

Experiment 2

Method

Participants — Participants (N = 30, 17 male) were children aged 7 years to 8 years, 9 months. Parents of the
children were recruited through a university participant pool. Protocols were approved by the University of Inter-
nal Review Board. Participants’ caregivers were informed of any risks in the study and an age appropriate as-
sent protocol was used for the children.

Participants completed three tasks during the experimental session; the Numerical Comparison, Free Re-
sponse Estimation and the Test of Early Mathematics Ability, 3rd Edition (Ginsburg & Baroody, 2003).

Numerical comparison task — Stimuli were 90 visually presented pairs of shape arrays with a midline sepa-
rator. Shape arrays ranged in number from 23 to 111 (see Appendix). The difference between the two values
being compared ranged from a ratio of 1.05 to 1.85. Participants were instructed to indicate which side con-
tained more shapes via button press. Stimuli were displayed for 2 seconds after which the screen was blank.
There was no response time limit; participants were instructed to respond as quickly as possible while being as
accurate as possible. No feedback was given, and there were no practice trials. Participants completed all 90
comparisons. Stimuli were constructed to control for the overall area of presented shapes.
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Free response estimation — Stimuli were 40 visually presented shape arrays. Arrays included randomly pla-
ces black squares of varying sizes. The number of objects ranged from 23 to 111 (see Appendix). Participants
were instructed to respond with an estimate of how many shapes were in the display. The stimuli were dis-
played for 2 seconds after which the participants were presented with a prompt to type their response. There
was no response time limit.

Mathematical ability — Participants completed the Test of Early Mathematics Ability 3rd Edition (TEMA), a
standardized early mathematics assessment (Ginsburg & Baroody, 2003). The TEMA is designed to assess
children's overall mathematical knowledge including formal and informal mathematics.

Results

Performance on the numerical comparison task — Participant’s performance on the numerical comparison
task ranged from 60% to 94% correct with a median of 80%.

Performance on the estimation task — We eliminated any trial for which participants did not make a re-
sponse, representing 4% of trials. We also eliminated responses that represented the top 5% of estimates as
many of these responses appeared to by types, e.g., ‘500000'. Participants’ performance on the estimation task
was calculated in the same manner as in Experiment 1. Accuracy was calculated by taking the absolute value
of the difference between the target value and participants’ given estimate and dividing by the target value. This
gives us a ratio-difference score, e.g., an estimation of 13 for the target value 10 would produce a score of 0.3.
Participant accuracy ranged from 0.30 to 1.06 with a median of 0.60.

We also calculated the variation in participants’ responses, separately from accuracy. Participants’ precision
score calculation was the same as described in Experiment 1. Participants’ precision score ranged from 0.29 to
0.84 with a median of 0.56. Precision and accuracy scores significantly correlated where increased precision
was associated with higher accuracy, r(28) = .57, p < .001 (Figure 3).

Figure 3. Graph of participants performance on the Estimation task by the Precision and Accuracy measures.

Note. Each dot represents one participant.
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Figure 4. Scatter plot of participants’ scores on the numerical comparison task (ANS Score) and their free estimation task
precision score.

Note. Estimation precision was calculated as the mean variation in estimation for the target value expressed as a ratio of
that value. Larger values represent less consistent estimation responses.

Performance on TEMA — Participant’s performance on the TEMA was calculated using the scoring instruc-
tions. Participant's scores ranged from 85 to 132 with a median of 114.

Relationship between tasks — We conducted a linear regression to predict participants’ numerical compari-
son score (arcsine transformation of the proportion of correct responses) using estimation accuracy, estimation
precision and age and TEMA score as predictors. Given the regression analysis to be performed 30 partici-
pants is sufficient for a large effect size (d = .70, power = 0.74). We found no significant predictors of numerical
comparison score (see Table 2). A bivariate correlation between numerical comparison task and estimation ac-
curacy score was non-significant, r(28) = .12, p = .52. A correlation between numerical comparison task and
estimation precision was also non-significant r(28) = .02, p = .91 (see Figure 4). A Bayes factor analysis sug-
gests evidence for the null hypothesis, BF = 0.072 for the regression model with Estimation Accuracy, Preci-
sion, TEMA score and age as predictors.

Table 2

Results Based on a Linear Regression Using Participant Scores for Estimation Accuracy, Estimation Precision, TEMA Score and
Participant Age to Predict Numerical Comparison Task Score

Independent Variable B 95% CI t(25) p d

Estimation Accuracy -0.02 [-0.35, 0.29] 0.17 .86 0.06
Estimation Precision 0.06 [-0.32, 0.46] 0.35 .73 0.04
TEMA score 0.0002 [-0.004, 0.005] 0.10 .91 0.04
Age -0.04 [-0.13, 0.05] 0.86 .39 0.34

Comparisons between adult and child participants — We found that adults’ performance on the estimation
task was significantly different in terms of accuracy (M = 0.289) compared to child (M = 0.60), t(81) = 8.67, d =
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1.45, p < .001. Adults estimation task precision score (M = 0.19) was also significantly different than children’s
(M = 0.56), t(81) = 15.21, d = 3.21 p < .001. Adults did not show a significant correlation between estimation
accuracy and precision, while child participants did. There are two possible explanations; the child participant
data is a Type 1 error due in part to the lower sample size, there is a developmental change in the relationship
between estimation accuracy and precision.

Behavioral Experiments Discussion

For both Experiments 1 and 2 we find no statistically significant relationship between participants’ performance
on the non-symbolic numerical comparison task and estimation task scores. The behavioral data reported in
data sets for Experiments 1 and 2 rely on the interpretation of a null effect, thus we used a Bayes Factor ap-
proach. While the two experiments had a range of participant ages, we found the same pattern across both
analyses for adults and children. In both cases, Bayes factor values suggest evidence for the null effect when
compared to the tested regression models. We also do not find that Experiment 2 participants’ TEMA scores
significantly predicted numerical comparison scores, despite prior evidence of a connection (Schneider et al.,
2017). The relatively small age range used in this experiment (7.0 to 8.75 yrs) may affect the measured rela-
tionship.

Current study results differ from prior work which reported a significant relationship between estimation variabil-
ity and number comparison but not estimation accuracy and number comparison (Libertus et al., 2016). Several
differences between the studies may contribute to the difference in results. The range of numbers used here for
estimation is larger than prior work. Estimation stimuli range was up to 111 whereas prior work was limited to no
more than 20 (Libertus et al., 2016). The participant age range was both older and broader than the 5 to 8
years of prior work. The current study combines data from participants 7 to 9 years old for Experiment 2 and 25
to 70 years old for Experiment 1.

We interpret the results of this experiment as inconsistent with the Precision hypothesis.

The lack of significant correlation between estimation precision and numerical comparison suggests that nu-
merical representation precision is not the primary driver of behavior. We consider the aforementioned alterna-
tive hypothesis, that general decision-making processes not specifically tied to number primarily drive numeri-
cal comparison performance. We elaborate on this potential process using a mathematical model in Experi-
ment 2.

Mathematical Modeling

The purpose of the modeling experiment is to demonstrate how well the processes proposed by the Precision
and Decision hypotheses fit the behavioral data from both Experiments 1 and 2. We evaluated the Precision
hypothesis and the alternative Decision hypotheses using a dynamic neural field model (e.g., McClelland et al.,
2010). We evaluate the two hypotheses using two versions of the same model. One model condition is de-
signed to implement the Precision hypothesis; the other model implements the Decision hypothesis. Both mod-
el conditions were fit to each participant’s behavioral data independently. Model optimization was implemented
via an evolutionary algorithm that minimized the deviation between behavioral data and model output. The opti-
mization procedure included adjustments to a subset of model specifications while others remained fixed. For
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the Precision hypothesis model, the specification for the width of the tuning curves was variable, while specifi-
cations for the decision layer did not vary. For the Decision hypothesis model, the tuning curve widths are fixed
while the intra-layer timing of evidence accumulation within the decision layer varies. This also changes the ac-
curacy in detecting differences from the neural turning curves that connect to the decision layer.

An important point here is that the current model is much more strict than prior models of numerical comparison
(Prather, 2014). As opposed to modeling participants’ performance on only the numerical comparison task, the
current model must simultaneously predict behavior on numerical comparison and estimation tasks for each
participant.

Method

Model Specifications and Procedure

The model was implemented using MATLAB (MathWorks). The architecture was a multilayered dynamic sys-
tems model (e.g., Simmering & Perone, 2013; Spencer, Smith, & Thelen, 2001). Layers included two perceptu-
al neural tuning curves and a decision layer. Perceptual layers modeled neural tuning curves associated with
neural coding of stimuli (e.g., Prather, 2012, 2014; Tudusciuc & Nieder, 2007). For the numerical comparison
task, the external inputs for the model were the two numerical values to be compared, taken from the stimuli in
Experiment 1. The two values were represented by proportionally scaled Gaussian curves that reproduce the
ratio dependent distance effect. Perceptual layers of the model reproduced the stimuli while activity was forwar-
ded to the decision layer. The internal decision layer connections were specified to produce competition within
the layer through lateral inhibition and self-excitation. Thus the two perceptual layers output created competition
within the decision layer. This dynamic corresponded to the "decision" which was the index of the first stable
activation peak in the decision layer. For the estimation task, the external input for the model was the target
value to be estimated, taken from the stimuli in Experiment 1.

Each trial was comprised of 600 time-steps, which was selected to be large enough for activity from the input
layers to create a decision in the output layer. Decisions were defined as when the decision layer produced a
steady peak (activity with a peak value at the same layer index for 10 straight time-steps). The time-step of the
decision was converted to the predicted reaction time of the decision. Thus on trials in which the model predic-
ted a fast decision the steady peak was reached a relatively low time-step. On trials in which the model predic-
ted a slower decision, the steady peak was reached on a higher time-step.

Model instantiations were fit to behavioral data from Experiment 2 using an evolutionary optimization algorithm.
Model instantiations were completed in batches of 10, each corresponding to a generation. For each genera-
tion, the model instantiations were ranked based on their deviation from the behavioral data. Model instantia-
tions with smaller deviations, smaller error, were ranked higher. For each generation instantiations ranked, 1–2
were moved forward as is to the next generation. Instantiations ranked 3–5 were ‘mutated' by adjusting the
specifications by a small random amount. Instantiations ranked 6–10 were discarded. Thus each generation in-
cluded 5 new instantiations were randomly generated specifications, 3 ‘mutated’ instantiations and 2 instantia-
tions carried over from the previous generation. The specifications of the evolutionary algorithm were selected
to maximize the efficiency of the algorithm to keep the number of batches needed relatively low.

The same process was employed for modeling behavioral data from Experiment 1 (adult participants) and Ex-
periment 2 (child participants).
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Results

Experiment 1 Model

What are the model conditions performances on the tasks? — The precision condition model instantiations
performance on the numerical comparison task ranged from 0.46 to 0.72 with a median of 0.62. Performance
on the estimation task, in terms of average proportional deviation from the target, ranged from 0.08 to 0.27 with
a median of 0.15. We found that performance on the comparison task correlated with the neural tuning curve
width r(69) = -.37, p < .01, where smaller tuning curve widths were associated with higher scores on the task.
We found that performance on the estimation task correlated with the neural tuning curve width, r(69) = .36, p
< .01, where smaller tuning curve widths were associated with better performance on the task.

The decision condition model instantiations performance on the numerical comparison task ranged from 0.50 to
0.86 with a median of 0.65. Performance on the estimation task, in terms of average proportional deviation from
the target, ranged from 0.08 to 0.23 with a median of 0.14. We found that performance on the comparison task
correlated with the neural tuning curve width r(69) = -.27, p = .02, where smaller tuning curve widths were asso-
ciated with higher scores on the task. Performance on the comparison task was significantly correlated with the
evidence rate parameter, r(69) = .67, p < .01. We found that performance on the estimation task was not corre-
lated with the neural tuning curve width, r(69) = .11, p = .36. Performance on the estimation task was not signifi-
cantly correlated with the evidence rate parameter, r(69) = .08, p = .50.

How well does each model fit participants’ data? — Model data was evaluated using a similar analysis to
the behavioral data. Each model version produced independent simulations of the numerical comparison and
estimation task. We compared results for the Precision condition models (n = 71) to the Decision condition
models (n = 71). For the Precision condition models, the median numerical comparison error was 0.02, with a
range from 0.18 to 0.0. The median estimation error was 11.5 with a range from 5 to 41. For the Decision condi-
tion models, the median numerical comparison error was 0.01, with a range from 0.17 to 0. The median estima-
tion error was 12 with a range from 6 to 39.

How does the model fit compare between precision and decision conditions? — To compare model fit for
Precision and Decision conditions we compared the deviation from human data for both tasks. The model error
for the numerical comparison task was significantly lower for the Decision condition models (median = 0.01)
than for the Precision condition models (median = 0.2), t(70) = 5.41, p < .001, d = 0.70. For the estimation task
the model error not significantly different between the Decision condition models (median = 11.5) and the Preci-
sion condition models (median = 12), t(70) = 1.33, p = .19, d = 0.049.

We calculated overall model error by combining numerical comparison and estimation error amounts. The over-
all model error was calculated as ErrorComparison + ErrorEstimation / 100. The equation was created to equally
weight error on both tasks. The overall model error for Decision condition models (median = 0.14) was signifi-
cantly lower than overall model error for Precision condition models (median = 0.16), t(70) = 5.53, p < .001, d =
0.32 (Figure 5).
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Figure 5. Total Error for Precision (grey-square) and Decision (black-diamond) model instantiations.

Note. The vertical axis represents the calculated error for each model instantiation. The horizontal axis represents the
individual human participants (n = 71). The order is sorted by difference between Precision and Decision model
performances.

These results show that the Decision condition models are better able to fit adult participants data for the nu-
merical comparison task. Fit to participant data for the estimation task was equivalent. This suggests that the
additional decision layer specification was only relevant to model fit to numerical comparison task and that it
leads to superior model fit compared to the use of neural tuning curve precision.

Experiment 2 Model

What Are the Model Conditions Performances on the Tasks? — The precision condition model instantia-
tions performance on the numerical comparison task ranged from 0.58 to 0.72 with a median of 0.67. Perform-
ance on the estimation task, in terms of average proportional deviation from the target, ranged from 0.25 to
0.08 with a median of 0.13. We found that performance on the comparison task did not significantly correlate
with the neural tuning curve width, r(28) = -.23, p = .22, where smaller tuning curve widths were associated with
higher scores on the task. We found that performance on the estimation task did significantly correlated with
the neural tuning curve width, r(28) = .75, p < .01, where smaller tuning curve widths were associated with bet-
ter performance on the task.

The decision condition model instantiations performance on the numerical comparison task ranged from 0.57 to
0.93 with a median of 0.77. Performance on the estimation task, in terms of average proportional deviation from
the target, ranged from 0.08 to 0.22 with a median of 0.12. We found that performance on the comparison task
not significantly correlated with the neural tuning curve width r(28) = -.25, p = .18, where smaller tuning curve
widths were associated with higher scores on the task. Performance on the comparison task was significantly
correlated with the evidence rate parameter, r(28) = .69, p < .01. We found that performance on the estimation
task correlated with the neural tuning curve width, r(28) = .42, p = .02, where smaller tuning curve widths were
associated with better performance on the task. Performance on the estimation task was not significantly corre-
lated with the evidence rate parameter, r(28) = .14, p = .46.

Prather 231

Journal of Numerical Cognition
2019, Vol. 5(2), 220–240
https://doi.org/10.5964/jnc.v5i2.164

https://www.psychopen.eu/


How well does each model fit participants’ data? — Model data was evaluated using a similar analysis to
the behavioral data. Each model version produced independent simulations of the numerical comparison and
estimation task. We compared results for the Precision condition models (n = 30) to the Decision condition
models (n = 30). For the Precision condition models, the median numerical comparison error was 0.15, with a
range from 0.26 to 0.01. The median estimation error was 26 with a range from 14 to 42. For the Decision con-
dition models, the median numerical comparison error was 0.03, with a range from 0.15 to 0. The median esti-
mation error was 25 with a range from 9.5 to 44.5.

How does the model fit compare between precision and decision conditions? — To compare model fit for
Precision and Decision conditions we compared the deviation from human data for both tasks. The model error
for the numerical comparison task was significantly lower for the Decision condition models (median = 0.03)
than for the Precision condition models (median = 0.15), t(29) = 7.78, p < .001, d = 1.76. For the estimation task
the model error not significantly different between the Decision condition models (median = 25) and the Preci-
sion condition models (median = 26), t(29) = 1.63, p = .11, d = 0.37.

We calculated the overall model error by combining numerical comparison and estimation error amounts. The
overall model error was calculated as ErrorComparison + ErrorEstimation / 100. The equation was created to equally
weight error on both tasks. The overall model error for Decision condition models (median = 0.28) was signifi-
cantly lower than overall model error for Precision condition models (median = 0.39), t(29) = 4.17, p < .001, d =
1.01 (Figure 6).

Figure 6. Total Error for Precision (grey-triangle) and Decision (black-squares) model instantiations.

Note. The vertical axis represents the calculated error for each model instantiation. The horizontal axis represents the
individual human participants (n = 30). The order is sorted by difference between Precision and Decision model
performances.

These results show that the Decision condition models are better able to fit participants data for the numerical
comparison task. Fit to participant data for the estimation task was equivalent. This suggests that the additional
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decision layer specification was only relevant to model fit to numerical comparison task and that it leads to su-
perior model fit compared to the use of neural tuning curve precision.

Mathematical Modeling Discussion

The mathematical modeling results demonstrate that the Decision model instantiations fit both adult’s and child-
ren’s data significantly closer than the Precision model instantiations. Put more generally, a mathematical mod-
el that includes specifications for both numerical representation and decision-making is a better fit to human
data than a model that only includes numerical representation. The modeling results suggest that behavioral
data reported in behavioral Experiments 1 and 2 cannot be well-characterized using only neural tuning curve
precision. This is in contrast with the apparent success of using neural tuning curves to model numerical com-
parison task (Prather, 2014) or the number-line estimation task (Prather, 2012). The current modeling study is
different in two crucial respects; first, we model individual participant data, not group means; second perform-
ance on multiple tasks are modeled simultaneously. The fit of tuning curve precision models to behavioral data
seems to be limited given these two considerations. The experiment demonstrates that the addition of a deci-
sion-making parameter allows for a far more accurate fit to participants’ data. This suggests that neural tuning
curve precision may be a necessary but not sufficient part of modeling the cognitive processes involved in com-
pleting numerical comparison and number-line estimation tasks.

General Discussion

The current study evaluated two models of the processes involved in comparing non-symbolic numbers. Re-
sults from both empirical and mathematical experiments are inconsistent with the hypothesis that numerical
comparison performance is better characterized by variation in neural tuning curve precision. We find that par-
ticipant’s performance on free response estimation, used as an estimate of tuning curve precision, does not
correlate with numerical comparison performance. Mathematical modeling results demonstrate that variation in
the decision-making process can better account for participants’ numerical comparison scores above and be-
yond variations in neural tuning curve precision. We interpret these results as inconsistent with the Precision
hypothesis. Individual variation in performance on the numerical comparison task is not primarily due to varia-
tion in tuning curve precision.

The current results provide important evidence regarding the processes involved in non-symbolic numerical
comparison. The current and recent results suggest that numerical representation precision does not play the
primary role in the numerical comparison task. This contradicts some previous speculation about the role of
neural tuning curve precision in numeral tasks (Prather, 2012, 2014). Of course, the precision and decision hy-
pothesis are not mutually exclusive. We expect many factors relating to attention or inhibition may in part ac-
count for behavior on the comparison task. It is also possible that the processes involved in numerical compari-
son can change with experience or development.

If the individual variation in numerical comparison accuracy is due to decision-making more so than number
representation what does that tell us? The importance of decision-making in numerical comparison may be in-
formative in the design of interventions to improve learner’s performance on numerical tasks. Individual varia-
tion in numerical decision-making may contribute to the association between numerical comparison skill and
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general mathematical skill. Learners’ skill at numerical decision-making may contribute to performance in a
wide range of numerical and arithmetic task.

If learners’ performance on the numerical comparison task can be characterized without invoking their repre-
sentations of number values it calls into question the source of the correlation between numerical comparison
skill and later arithmetic skills. Recent meta-analysis show mixed evidence that numerical comparison skill, in
and of itself, predicts later performance (Chen & Li, 2014; Gilmore et al., 2010). It is possible that these correla-
tions capture variations in domain general skills that happen to be involved in completing the task, such as in-
hibition (e.g., Gilmore et al., 2013; Purpura & Simms, 2018).

How do the numerical comparison measures used here relate to other work? The non-symbolic numerical com-
parison task has varying relationships to other measures depending on the details of the task (e.g., Dietrich,
Huber, & Nuerk, 2015). The stimuli in the current study were controlled for item size but not item density of the
display. This is not the same set up as some other studies (e.g., Panamath; Halberda, Mazzocco, & Feigenson,
2008). Of course, there is evidence that precisely controlling for non-numerical cues may be somewhat beside
the point. Participants develop an internal representation of the numerical values of the stimulus that may be
informed in part by density, area, perimeter, or convex hull. The point here is that the accuracy of such compari-
sons does not have a significant relationship with the precision of the representations of the same stimuli. We
are concerned with the relationship between individual learner’s behavior on these tasks and what that may say
about the cognitive processes involved. Other work has even challenged if numerical comparison can be
thought of a purely numerical task regardless of the controls employed (Gilmore, Attridge, & Inglis, 2011;
Smets, Gebuis, Defever, & Reynvoet, 2014).

Potential Limitations

The child participant data lower sample size may contribute to a possible Type 1 error. It is also possible that
adult and child participant results vary because of developmental changes in the relationship between estima-
tion accuracy and precision. Given the scope of the current data we suggest caution in interpreting differences
between the adult and child participants.

Reliability of measures calculated using a split-half Spearman correlation. For the data in Experiment 1, we cal-
culated the Spearman coefficient using split half as r = .70. This reliability level is similar to what was reported
in Chesney et al. (2015), r = .74. This suggests an acceptable level of reliability for the current measures. For
the estimation task, we can calculate what the confidence interval for the measure of the participants' standard
deviation (SD), which is used in calculating their estimation precision score. With 64 trials for the estimation
task the 95% confidence interval for the SD [0.85*SD, 1.21*SD].

Other models of decision-making such as drift diffusion models are fairly successful for weighing evidence in
two-alternative decision-making (Park & Starns, 2015; Pirrone, Marshall, & Stafford, 2017; Purcell et al., 2010).
The current approach does not contradict a drift diffusion model; there are some similarities in implementation.
The model implementation of decision-making is comparable to the drift diffusion approach. The current mod-
el's implementation of evidence accumulation is the adjustment of thresholds for competition between two po-
tential choices. Though the mathematics of the model implementations differs, we do not see the models as in
conflict with each other. However, the current approach allows for a model implementation that can be applied
to a two alternative forced choice task and a free response estimation task simultaneously. A considerable mo-
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tivation of the use of a dynamic systems model is the potential to be broadly applied to behavioral and neural
data for a variety of tasks. It is unclear how to adopt a drift-diffusion model, typically used for two alternative
forced choice tasks to a free response task. Only recently has work been done using drift diffusion for multiple
alternative choice tasks (Slezak, Sigman, & Cecchi, 2018).
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Appendix

Comparison Task Values

Experiment 1: 60 44, 30 35, 17 15, 30 22, 45 51, 20 22, 52 40, 30 34, 90 105, 78 60, 60 64, 25 28, 15 17, 20 25, 20 26, 40
52, 60 44, 30 35, 44 60, 64 60, 56 50, 26 20, 11 10, 60 78, 105 90, 84 75, 50 56, 10 11, 75 60, 20 22, 90 96, 45 51, 51 45,
25 20, 90 66, 60 64, 30 22, 15 17, 52 40, 60 78, 33 30, 105 90, 30 32, 50 56, 50 40, 20 26, 66 90, 44 60, 70 60, 30 33, 40
50, 50 40, 11 10, 75 84, 84 75, 35 30, 28 25, 40 50, 28 25, 90 96, 17 15, 90 66, 60 75, 20 25, 40 52, 66 90, 22 30, 35 30, 30
33, 90 105, 60 70, 75 84, 22 30, 33 30, 22 20, 34 30, 60 75, 30 32, 78 60, 60 70, 32 30, 96 90, 32 30, 56 50, 22 20, 25 20,
26 20, 64 60, 30 34, 70 60, 96 90, 51 45, 34 30, 25 28, 10 11, 75 60

Experiment 2: 51 30, 18 15, 35 25, 56 35, 13 10, 45 30, 22 20, 26 14, 18 15, 34 20, 30 25, 51 30, 11 10, 15 10, 45 30, 75
50, 18 15, 32 20, 42 40, 30 20, 34 20, 56 35, 39 30, 42 40, 13 10, 13 10, 75 50, 18 15, 33 30, 13 10, 60 40, 54 45, 60 40, 11
10, 56 35, 18 15, 35 25, 54 45, 39 30, 35 25, 56 35, 33 30, 56 35, 51 30, 26 14, 26 14, 60 40, 56 35, 75 50, 54 45, 15 10, 32
20, 35 25, 56 35, 30 25, 54 45, 34 20, 51 30, 18 15, 33 30, 35 25, 60 40, 45 30, 11 10, 22 20, 19 14, 13 10, 35 25, 13 10, 51
30, 33 30, 30 20, 42 40, 39 30, 39 30, 39 30, 75 50, 54 45, 15 10, 18 15, 34 20, 15 10, 18 10, 34 20, 51 30, 30 20, 11 10, 11
10, 45 30, 30 20

Stimuli: see Supplementary Materials

Estimation Task Values

23, 29, 33, 37, 69, 87, 99, 111
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