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Abstract
Learning mathematics requires fluency with symbols that convey numerical magnitude. Algebra and higher-level mathematics involve literal
symbols, such as "x", that often represent numerical magnitude. Compared to other symbols, such as Arabic numerals, literal symbols may
require more complex processing because they have strong pre-existing associations in literacy. The present study tested this notion using
same-different tasks that produce less efficient judgments for different magnitudes that are closer together compared to farther apart (i.e.,
same-different distance effects). Twenty-four adolescents completed three same-different tasks using Arabic numerals, literal symbols, and
artificial symbols. All three symbolic formats produced same-different distance effects, showing literal and artificial symbol processing of
numerical magnitude. Importantly, judgments took longer for literal symbols than artificial symbols on average, suggesting a cost specific to
literal symbol processing. Taken together, results suggest that literal symbol processing differs from processing of other symbols that
represent numerical magnitude.
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Success in mathematics requires fluency with numerical symbols and their relation to one another. Indeed, re-
search shows a link between efficient comparison of Arabic numerals and mathematics achievement in children
and adults (Castronovo & Göbel, 2012; De Smedt, Noël, Gilmore, & Ansari, 2013; Holloway & Ansari, 2009;
Schneider et al., 2017). However, success in higher-level mathematics such as algebra requires fluency with
other symbols that represent numerical magnitude, namely literal symbols (e.g., x) (Rosnick, 1980, 1982;
Schoenfeld & Arcavi, 1999). The present study concerns processing literal symbols compared to other symbols
that represent numerical magnitude.

Students experience substantial and persistent difficulty with literal symbols from first exposure through college
algebra (Akgün & Özdemir, 2006; Booth, 1999; Christou & Vosniadou, 2005; MacGregor & Stacey, 1997;
McNeil et al., 2010; Philipp, 1992; Rosnick, 1982; Trigueros & Ursini, 2003; Ursini & Trigueros, 2004). Student
difficulty results from many factors, including mathematical syntax (Schoenfeld & Arcavi, 1999), novel algebraic
notational conventions (Kieran, 2007), and insufficient explanations in mathematics curricula (Rosnick, 1982).
Importantly, student difficulty also stems from literal symbol processing – connecting the literal symbol to its ref-
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erent (MacGregor & Stacey, 1997; Philipp, 1992; Rosnick, 1982, 1999; Stacey & MacGregor, 1999). Even the
basic act of connecting literal symbols to their referents requires more complex processing compared to Arabic
numerals because of properties inherent to literal symbols and how they function in mathematics.

Arabic numerals and literal symbols co-occur in algebra problems (e.g., 3x = 12), but the two symbolic repre-
sentations qualitatively differ in three main ways. First, literal symbols do not have consistent numerical magni-
tudes across mathematical contexts like Arabic numerals (e.g., x can be 3, -4, or ½). Second, literal symbols do
not have a single magnitude, like Arabic numerals (e.g., ‘3’ never stands for both 3 and 4 objects; x can stand
for two numbers or all real numbers [Usiskin, 1999]). Third, literal symbols are not specific to numeracy, like
Arabic numerals. Children initially develop fluency with literal symbols in the context of literacy. When children
see literal symbols in a mathematics context, they bring strong prior associations for those symbols related to
reading and writing. For instance, young students may confuse a literal symbol’s numerical magnitude with its
numerical position in the alphabet, or confuse the linear ordering of numbers with the linear ordering of the al-
phabet (MacGregor & Stacey, 1997; Wagner, 1983). Students may also incorrectly associate literal symbols
with objects (e.g., a = apples) rather than a related numerical magnitude (e.g., a = the number of apples), or
confuse the two associations (McNeil et al., 2010; Rosnick, 1982). Associating literal symbols with objects can
interfere with the notion that literal symbols can have a numerical referent (Booth, 1999) and can lead to diffi-
culties with word problems that persist into college (McNeil et al., 2010; Philipp, 1992; Rosnick, 1982). Nascent
research into the cognitive mechanisms of literal symbol processing suggests that even for their most restricted
use, when they represent one magnitude like Arabic numerals, literal symbols are processed differently
(Pollack, Leon Guerrero, & Star, 2016).

In sum, literal symbols signify a substantial departure from the symbol-magnitude mapping that students learn
with Arabic numerals or number words. Students’ familiarity with literal symbols in the context of literacy and
their inherent properties in mathematics show that literal symbols require more complex cognitive processing
compared to Arabic numerals. However, an understanding of this cognitive processing is lacking. A useful start-
ing point, as undertaken in the present study, is to target the core, lower-level cognitive processes that support
literal symbol use in numerical contexts. Such work can inform future research related to higher-level mathe-
matical contexts that involve literal symbols.

Measuring Literal Symbol Processing

One way to investigate literal symbol processing is to adapt tasks, such as number comparison, which are com-
monly used to measure numerical magnitude processing (Dehaene, Dehaene-Lambertz, & Cohen, 1998;
Schneider et al., 2017). In these tasks, participants may view two arrays of dots or two Arabic numerals and
judge which one is larger in number. Error rates and response times decrease as the distance between the two
numbers increase, a behavioral signature known as the Comparison Distance Effect (CDE) (Moyer & Landauer,
1967). The CDE may arise from the engagement of a mental number line, which indicates numerical magnitude
processing (Restle, 1970). Numbers that are closer together are harder to compare since their representations
overlap more on the mental number line than numbers that are farther apart. However, many argue that the
CDE may result from alternative cognitive processes, such as decision-making associated with comparison it-
self (Cohen Kadosh, Brodsky, Levin, & Henik, 2008; Krajcsi & Kojouharova, 2017; Smets, Gebuis, & Reynvoet,
2013; Van Opstal, Gevers, De Moor, & Verguts, 2008; Verguts, Fias, & Stevens, 2005) or the strength of asso-
ciations between discrete quantities in a semantic network (Krajcsi, Lengyel, & Kojouharova, 2016). Alternative
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numerical judgment tasks can elicit distance effects that result from processing numerical magnitude rather
than decision-making processes, including a priming task (Reynvoet, De Smedt, & Van den Bussche, 2009) or
a same-different task (e.g., Van Opstal & Verguts, 2011).

In a priming task, participants view two sequentially presented numbers (i.e., prime-target pairs) and compare
the target to a fixed standard (i.e., 5). Response times and error rates are smaller when the distance between
the prime and target is smaller. This is known as the priming distance effect (PDE), which occurs because the
first number primes the comparison (e.g., Defever, Sasanguie, Gebuis, & Reynvoet, 2011; Van Opstal et al.,
2008). For example, given the prime-target pairs 3 – 4 and 1 – 4, comparing ‘4’ to ‘5’ will be faster in the first
pair because ‘3’ primes ‘4’ more than ‘1’ primes ‘4’.

Pollack et al. (2016) used a priming paradigm to investigate the differences between literal symbol and Arabic
numeral processing in adults. The authors tested whether literal symbols produced a PDE when they were as-
signed a particular numerical magnitude (e.g., y = 9) to use during comparison. Literal symbols could be the
prime (i.e., first number in the pair) or the target (i.e., second number in the pair). Consistent with prior literature
(Defever et al., 2011), Pollack et al. (2016) found a PDE with Arabic number pairs. However, there was no PDE
with literal symbols, even though participants learned the numerical magnitudes with a high level of accuracy.
Because participants compared both the prime and target to ‘5,’ the authors used the prime comparisons to
look for a CDE and found similar results; a CDE for Arabic numerals, but not literal symbols. These findings
suggest that literal symbol processing may fundamentally differ from Arabic numeral processing, even when lit-
eral symbols represent one numerical magnitude. Alternatively, the task may not have required participants to
process numerical magnitude. Because participants pressed left and right buttons for ‘less than 5’ and ‘more
than 5,’ participants may have merely associated literal symbols with ‘left’ or ‘right.’ Further, this study did not
include numerical judgments with a non-alphabetic symbol set. Therefore, differences between literal symbol
and Arabic numeral processing, and whether pre-existing associations in literacy affect literal symbol process-
ing, remain open questions.

The Present Study

The present study addresses both limitations discussed above. First, it examines differences between process-
ing literal symbols and Arabic numerals using a same-different task, in which participants decide whether two
simultaneously presented symbols represent the same or different numerical magnitudes. This task produces a
Same-Difference Distance Effect (SDDE) that results from numerical magnitude processing, in which response
times and error rates decrease as different numerical distances increase. A same-different task is ideal to probe
whether literal symbols can also produce distance effects, as with other number symbols. Prior studies have
consistently elicited SDDEs with dot arrays, number words, Arabic numerals, and their cross-format combina-
tions, such as ‘TWO’ and ‘7’ (Defever, Sasanguie, Vandewaetere, & Reynvoet, 2012; Dehaene & Akhavein,
1995; Duncan & McFarland, 1980; Van Opstal & Verguts, 2011). Importantly, cross-format combinations pro-
duce SDDEs from access to numerical magnitude representations, not decision-related processes (Van Opstal
& Verguts, 2011) or perceptual effects (Cohen, 2009). Further, while letters (without numerical magnitude) in-
duce comparison distance effects (Lovelace & Snodgrass, 1971; Parkman, 1971), they do not produce SDDEs
(Van Opstal & Verguts, 2011), which further supports using a same-different task to investigate numerical mag-
nitude processing with literal symbols. Second, the present study incorporates same-different judgments with
artificial symbols to test whether pre-existing associations with literacy affect literal symbol processing.
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Participants completed three same-different judgments, with Arabic numerals and number words (i.e., numbers
only condition), Arabic numerals and literal symbols (i.e., literal symbols condition), and Arabic numerals and
artificial symbols (i.e., artificial symbols condition). For the latter two, participants learned symbol-magnitude as-
sociations for the literal or artificial symbols. An SDDE was expected with Arabic numerals and number words.
If pre-existing linguistic associations hamper literal symbol processing, there would be an SDDE for artificial
symbols but not literal symbols. Alternatively, both could produce SDDEs, but literal symbol processing may be
more difficult, resulting in increased error rates and/or response times.

Because the literal and artificial symbol sets require learned associations, participants with higher working
memory capacity may respond more accurately and quickly than participants with low working memory capaci-
ty. Indeed, taxing working memory can affect performance on some number comparison tasks (van Dijck &
Fias, 2011; van Dijck, Gevers, & Fias, 2009). A working memory task was included to account for this possibili-
ty.

Method

Participants

Twenty-four typically developing adolescents aged 14-18 (M = 16.63, SD = 1.28, 67% female, 87% right-hand-
ed) from the Boston area participated. A sample of adolescents of high school age provides an opportunity to
examine literal symbol processing in the earlier stages of developing proficiency with literal symbols. Students
in this age range have been introduced to literal symbols in a mathematics context and thus have learned (even
if implicitly) that literal symbols can represent numerical magnitudes. Based on prior studies, a sample of 24 is
adequate to elicit group-level symbolic SDDEs (e.g., Dehaene & Akhavein, 1995; Van Opstal & Verguts, 2011).

Participants were recruited via flyers, online postings, and through schools. All participants were native English
speakers, since the language in which numbers are learned contributes to differences in mathematics perform-
ance (Dehaene, 1997). To ensure adequate introductory exposure to literal symbols, participants had previous-
ly passed Algebra I and either had taken, or were concurrently enrolled in, a subsequent mathematics class
(e.g., Geometry). However, participants’ highest level of mathematics was not recorded. Participants who were
18 years old provided consent; those under 18 years old provided assent along with parental permission. The
study was approved by the Harvard Committee on the Use of Human Subjects and participants received small
monetary compensation for participating.

Stimuli and Procedures

Participation involved a one-hour testing session with three same-different tasks, two training tasks, and a
working memory task. Training and same-different judgments were designed using OpenSesame 2.8.3
(Mathôt, Schreij, & Theeuwes, 2012) and presented on a Google Nexus 7 tablet using the OpenSesame Ex-
periment Runtime Application. To assess working memory, participants completed a backward digit span task
(Mueller, 2011), which was administered using The Psychology Experiment Building Language (Mueller &
Piper, 2014) on a Macbook Pro running OSX.
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Participants completed the tasks sitting in a quiet space at their school, in a university research lab, or at a pub-
lic library. Participants first completed same-different judgments with Arabic numerals and number words, and
ended with the backward digit span task. In-between, participants completed two sets of tasks that involved as-
sociating literal or artificial symbols with unique numerical magnitudes and subsequently performing same-dif-
ferent judgments with those symbols. The symbol set (i.e., literal symbols, artificial symbols) that participants
worked with first was counterbalanced.

Same-Different Judgment With Numbers Only

Participants viewed cross-notation pairs of Arabic numerals and number words using 1, 2, 7, and 8; and “ONE,”
“TWO,” “SEVEN,” and “EIGHT,” in Arial font size 72. Cross-notation pairs eliminate a visual matching strategy
that interferes with semantic processing (Defever et al., 2012; Van Opstal & Verguts, 2011). Participants judged
whether the pairs represented same or different magnitudes. Same pairs (e.g., ONE-1) had a distance of zero
and different pairs were either Near, with a distance of one (e.g., TWO-1), or Far, with a distance of five, six, or
seven (e.g., 8-ONE). There were 8 trials of Same pairs, each shown four times, 8 trials of Near pairs, each
shown twice, and 16 trials of Far pairs, each shown twice, for 80 trials per block. There were three blocks, re-
sulting in 240 total trials, shown in a pseudorandom order. As in Van Opstal and Verguts (2011, see Experiment
2), participants saw Near and Far pairs equally often. Same pairs were shown twice as often to provide approx-
imately the same number of left and right responses. Trials began with a fixation dot displayed for 500 ms, fol-
lowed by the number pair, which displayed until response. Participants touched the left side of the screen if the
number pair represented the same magnitude and touched the right side of the screen if the number pair repre-
sented different magnitudes. The trial ended with a 500 ms intertrial interval.

Literal Symbols

Participants first completed a paired-associate learning task with four symbol-magnitude associations, similar to
a procedure used in Pollack et al. (2016). Table 1 provides the set of literal symbols (adopted from Van Opstal
& Verguts, 2011) and their numerical equivalents. The goal was for participants to equate the literal symbols
with numerical magnitudes for use in a subsequent same-different task. Initially, participants viewed the four as-
sociations (e.g., Q = 1) for as long as needed, but for a minimum of 20 seconds. Then participants completed a
test of the associations. Participants saw a symbol for 750 ms and were asked to vocalize the associated nu-
merical magnitude and select it from a choice screen containing 1, 2, 7, and 8, each in one quadrant of the
screen, displayed until response. The number positions changed for each trial. Feedback of “Good job!” or
“Oops!” displayed for 750 ms and the correct symbol-magnitude association was displayed for 750 ms. The trial
ended with a 500 ms intertrial interval. The task began with eight practice trials, two of each association. To test
all associations approximately equally, trials were presented in the same pseudorandom order for all partici-
pants. Trials continued until the participant reached an accuracy of at least 93% with at least 21 additional tri-
als.i On average, participants completed 29 trials (SD = 23, range: 21-109). This task took approximately five
minutes.

After paired-associate learning, participants completed a same-different task. Pairs were from the numerical
same-different task, but in the different number pairs, the number words “ONE,” “TWO,” “SEVEN,” and “EIGHT”
were replaced with Q, G, R, and H. Half of the Same pairs had the literal symbol on the left (e.g., Q-1) and the
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remaining half had the literal symbol on the right (e.g., 1-Q). All procedures were the same as the numerical
same-different task.

Table 1

Arabic Numerals Used in All Three Conditions With the Associated
Literal and Artificial Symbols

Arabic numeral Literal symbol Artificial symbol

1 Q

2 G

7 R

8 H

Artificial Symbols

As with literal symbols, participants completed a paired-associate learning task and then completed a same-
different task. All participants successfully completed the learning task with 8 practice and 21 additional trials. In
the same-different task, different number pairs consisted of the numbers 1, 2, 7, and 8, and four artificial sym-
bols, which were corresponding Gibson figures used in prior research on artificial symbol training (Tzelgov,
Yehene, Kotler, & Alon, 2000). Gibson, Gibson, Pick, and Osser (1962) created these figures in accordance
with characteristics of letters (e.g., number of curves, lines, and angles; open and closed forms; symmetry).

Table 1 displays the four artificial symbols, and their literal symbol and numerical equivalents. As with literal
symbols, half of the Same pairs had the artificial digit on the left and the other half had the artificial digit on the
right. All other procedures were the same as in the literal symbols condition.

Backward Digit Span

Finally, each participant completed a backward digit span task (Mueller & Piper, 2014) to measure working
memory capacity. Each participant saw a sequence of numbers 3 to 10 digits in length. After the sequence
ended, the participant typed the sequence in reverse order. If the response was correct, the next sequence was
one digit longer. If incorrect, the next sequence was the same length. Length and number of correct items were
recorded; participants’ backward digit span was measured as the previous string length after two unsuccessful
recalls at the same string length. Average backward digit span was 6.71 (SD = 1.55, range: 4-10).

Data Analysis

Following Sasanguie, Defever, Van den Bussche, and Reynvoet (2011) and Van Opstal and Verguts (2011),
same pairs were excluded from analysis since the SDDE only manifests between Near and Far pairs, even for
cross-notation pairs. Mean error rate was calculated for each participant, separately for Near and Far pairs for
each symbol set (i.e., numbers only, literal symbols, artificial symbols). Median response time was calculated
for each participant for correct responses, separately for Near and Far pairs for each symbol set.
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Error rate and response time were modeled as separate outcomes. The relationship between distance and
each outcome was estimated using random-effects multi-level models. This approach is preferred for data anal-
yses because it accounts for repeated-measures of distance (i.e., near, far) for each participant, simultaneously
provides estimates of differences between all three symbols sets, allows for the inclusion of covariates, and fa-
cilitates model comparison. Equation (1) describes the two-level multi-level model:

Y ij = β0 + β1NEARij + β2NUMij + β3ASij + β4Xj + eij + uj

In Equation 1, Y ij represents each outcome (i.e., error rate, response time) for each distance i and each partici-
pant j. NEARij is a dichotomous predictor in which Near trials are coded as ‘1’ and Far trials are the reference
category. A set of dummy predictors, NUMij and ASij, represent the Arabic numeral (NUMij = 1) and artificial
symbol (ASij = 1) sets for each distance i and participant j; literal symbols serve as the reference category to
facilitate comparison between participants’ performance with literal symbols and the other symbol sets. A vector
of participant level covariates, Xj, includes backward digit span, age, gender, and order of administration (for
potential order effects beyond counterbalancing). Finally, the model includes random effects for the repeated-
measures (eij) and participant levels (uj) to account for the multi-level nature of the data. There are three pa-
rameters of interest; β1 captures the effect of distance on the outcome, β2 represents the average difference in
the outcome between same-different judgments with number symbols and literal symbols, and β3 represents
the average difference in the outcome between same-different judgments with artificial and literal symbols. To-
gether, β2  and β3 represent the effect of symbol set.

Models were fit using maximum likelihood estimation and bootstrapped standard errors (200 replications) to ad-
dress violations of L1 and L2 residual normality. For error rate, Shapiro-Wilk tests showed violations of Level 1
(W = 0.955, p < .001) and Level 2 (W = 0.905, p = .03) residual normality. Similarly, for response time, Shapiro-
Wilk tests showed violations of Level 1 (W = 0.876, p < .0001) and Level 2 (W = 0.891, p = .01) residual nor-
mality. Lastly, due to a software malfunction, one participant’s data for the literal symbols same-different condi-
tion was not recorded.

Results

Descriptive Statistics

Table 2 displays the descriptive statistics for error rate and response time for each of the three symbol sets,
both overall and by Near and Far distances. As Table 2 shows, error rates were larger for Near trials than for
Far trials, in the sample. Sample response times were longer for Near trials compared to Far trials. Further,
sample error rates were higher on average for literal and artificial symbols than for the numbers only condition.
Average sample median response times were longer for literal and artificial symbols compared to the numbers
only condition.

(1)
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Table 2

Descriptive Statistics for Error Rate and Response Time Outcomes, Overall and by Distance, for Each of the Three Symbol Sets

Symbol Set

Error rate (%) Response time (ms)

Overall Near Far Overall Near Far

Numbers only
M 3.56 2.95 1.17 772 809 770
SD 3.29 3.63 1.61 130 148 145

Literal symbols
M 4.91 4.26 1.59 921 953 931
SD 5.44 4.05 3.09 220 189 257

Artificial symbols
M 4.58 4.60 1.91 843 872 846
SD 4.05 4.56 2.31 140 185 147

No Differences Across Symbolic Formats for Error Rate

Table 3 displays a taxonomy of fitted models estimating the effects of distance and symbol set on each out-
come, and includes parameter estimates, standard errors, random effects, and goodness-of-fit statistics. The
left portion of Table 3 shows three fitted models estimating the effects of distance and symbol set on error rate.

Table 3

Selection of Multilevel Models Specifying the Effects of Distance and Symbol Set on Error Rate (i.e., Models 1-3) and Response Time
(Models A-C) (nL1 = 142, nL2 = 24)

Parameter

Error rate (%) Response time (ms)

Model 1 Model 2 Model 3 Model A Model B Model C

Intercept
β 2.718*** 1.528*** 1.650** 860.870*** 846.683*** 924.343***

SE 0.470 0.397 0.582 29.875 30.392 42.817

Near
β 2.377*** 2.377*** 28.366*** 28.366***

SE 0.346 0.346 6.772 6.772

Numbers only
β -0.777 -149.068***

SE 0.545 37.193

Artificial symbols
β 0.417 -79.516**

SE 0.582 28.951

Random effects
σu 2.239** 2.302** 2.311** 146.366*** 146.505*** 147.899***
σe 2.737*** 2.406*** 2.344*** 119.368*** 118.350*** 98.240***

ρ 0.401* 0.478** 0.493** 0.601*** 0.605*** 0.694***

Goodness-of-fit
Log-likelihood -363.647 -348.463 -345.344 -908.041 -907.030 -884.888

*p < .05. **p < .01. ***p < .001.
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Model 1 in Table 3 displays the fitted error rate across all distances and symbol sets. The intra-class correlation
(i.e., ρ) for Model 1 shows that 40% of variance in error rate was attributable to differences across participants.
As Model 2 shows, there was a distance effect for error rate. The error rate on Near trials was 2.377 percent-
age points higher than the error rate on Far trials, on average (z = 6.88, p < .0001). The third model estimates
the effects of distance and symbol set on error rate. As Model 3 shows, there was not a statistically significant
relationship between symbol set and error rate (ps > .15). Further, the relationship between distance and error
rate was unchanged, showing the distance effect on error rate remained when controlling for symbol set. Taken
together, these models show an SDDE for error rate across all symbol sets, but no effect of symbol set.

Additional models were fit to test for interactions between symbol set and distance and to test the effects of the
backward digit span, gender, age, and order covariates. None produced statistically significant relationships
with error rate (ps > .34 and ps > .13, respectively). Figure 1 illustrates the fitted relationship between error rate
and distance by symbol set (i.e., Model 3).

Figure 1. Fitted relationship between distance and error rate for all three symbol sets.

Note. The difference in error rate between Near and Far conditions illustrates the main effect of distance. However, there
was no statistically significant difference in error rate between the three symbol sets, controlling for distance. Error bar
represents standard error associated with fitted relationship (Model 3).

Differences Across Symbolic Formats for Response Time

The right portion of Table 3 shows three models estimating the effects of distance and symbol set on response
time. Model A shows the fitted average response time across all distances and symbol sets. The intra-class
correlation for Model A shows that approximately 60% of the variance in response time was attributable to dif-
ferences between participants. Model B shows a statistically significant distance effect for response times. On
average, participants took about 28 ms longer to respond to Near trials than to Far trials (z = 4.19, p < .0001).
Model C shows the distance effects remained when controlling for symbol set.

Model C also shows there was a statistically significant difference in response time between literal symbols and
the numbers only condition; it took about 149 ms longer, on average, to make same-different judgments with
literal symbols, controlling for distance (z = -4.01, p < .0001). Crucially, there was a statistically significant differ-
ence in response time between literal symbols and artificial symbols. Average response times were about 80
ms longer when making same-different judgments with literal symbols, controlling for distance (z = -2.75,
p = .006). Further, a General Linear Hypothesis test showed that, on average, participants took 69.55 ms lon-
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ger to make same-different judgments with artificial symbols compared to Arabic numerals (SE = 19.63, z =
3.54, p < .001). This shows that same-different judgments were fastest in the numbers only condition, which is
expected because of participants’ fluency with Arabic numerals and number words, and a lack of automatic as-
sociations between numerical magnitudes and the other two symbol sets.

Subsequent models were also fit to test for interactions between distance and symbol set, and to test for effects
of the backward digit span, gender, age, and order covariates. None showed a statistically significant relation-
ship with response time (ps > .40 and ps > .18, respectively). Figure 2 illustrates Model C, the relationship be-
tween response time and distance for each symbol set.

Figure 2. Fitted relationship between distance and response time (ms) for the three symbol sets.

Note. The figure illustrates the statistically significant distance effect and the statistically significant differences in average
response times among all three symbol sets, controlling for distance.

To further investigate the response time differences, an additional multilevel model was fit using trial level data,
adjusting the standard errors to account for the clustering of trials within participants. Unlike the more common
participant-level analyses, which weight each participant’s aggregated response times equally, the trial level
analysis differentially weights participants according to the number of trials each participant contributes (i.e.,
how accurate the participant is). Table 4 displays three models (A1, B1, C1) that relate to the participant level
Models A-C (see Table 3). As Table 4 shows, the results were consistent across both analyses. For distance,
comparison of Near trials took longer on average than Far trials. For symbol set, comparison with literal sym-
bols took longer than comparison with numbers only and with artificial symbols, and the difference was greater
in magnitude for the former than the latter. The trial and participant level estimates differ slightly, which is ex-
pected based on the differential weighting of the data (since only accurately-answered trials were included in
the response time analysis). All subsequent models testing covariates and interactions were consistent with the
participant-level analysis.

Taken together, these results show that in addition to digits and number words, literal and artificial symbols pro-
duced an SDDE. As one would expect, it took longer, on average, to make same-different numerical magnitude
judgments with symbols that are not Arabic numerals or number words. Importantly, these results suggest that
some symbol sets may be more difficult to work with than others. Specifically, while there was no difference in
accuracy when working with different symbol sets, same-different judgments with literal symbols elicited a cog-
nitive processing cost compared to artificial symbols, which manifested as a longer response time, on average,
regardless of distance.
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Table 4

Taxonomy of Multilevel Models Specifying the Relationship of Response Time With Distance and Symbol Set, Using Trial Level Data and
Clustering Standard Errors at the Participant Level (n1 = 9,903; n2 = 24)

Parameter

Response time (ms)

Model A1 Model B1 Model C1

Intercept
β 946.508*** 937.758*** 1045.849***

SE 39.080 39.777 62.150

Near
β 26.699*** 26.917***

SE 6.923 6.877

Numbers only
β -207.910***

SE 54.421

Artificial symbols
β -108.312*

SE 43.908

Random effects
σu 199.857*** 199.873*** 198.492***
σe 406.508*** 406.314*** 397.485***

ρ 0.195 0.195 0.200

Goodness-of-fit
Log-likelihood -73600.353 -73595.646 -73378.444

*p < .05. **p < .01. ***p < .001.

Discussion

The present study used a series of same-different judgments to examine the nature of literal symbol processing
related to numerical magnitude. It replicated an SDDE with Arabic numeral - number word pairs and examined
whether pre-existing associations for literal symbols hinder literal symbol processing. Each aim is discussed in
turn.

SDDEs Across Symbolic Formats

Participants compared cross-notation pairs of number words and Arabic numerals that either represented the
same magnitude or differed in magnitude by a small or large amount. Participants showed an SDDE; error rate
was lower and response times were shorter on average for number pairs with greater distance. These results
support the presence of a symbolic SDDE in adolescents, which aligns with prior research on the symbolic
SDDE in children (e.g., Defever et al., 2012) and adults (e.g., Dehaene & Akhavein, 1995; Van Opstal &
Verguts, 2011).

After paired-associate learning, participants completed same-different tasks with literal and artificial symbols.
Both symbol sets produced SDDEs for error rate and response time. Building on prior research on the SDDE
(e.g., Dehaene & Akhavein, 1995; Van Opstal & Verguts, 2011), these findings imply that same-different judg-

Pollack 251

Journal of Numerical Cognition
2019, Vol. 5(2), 241–259
https://doi.org/10.5964/jnc.v5i2.163

https://www.psychopen.eu/


ments with newly-learned symbol formats involve processing numerical magnitude. These SDDEs also align
with related studies that show congruity effects for numerical Stroop tasks with artificial symbols (Cohen
Kadosh, Soskic, Iuculano, Kanai, & Walsh, 2010; Tzelgov et al., 2000) and comparison distance effects with
artificial symbols associated with non-symbolic numerical magnitudes (Lyons & Ansari, 2009). The present re-
sults extend this work, suggesting that non-numeric symbols associated with symbolic, cardinal representations
of number show behavioral signatures of numerical processing.

Further, the magnitude of the SDDEs did not differ across symbolic formats. This may seem surprising, since
the literal and artificial symbol trainings may be akin to the development of symbol-quantity associations. Re-
search on changes in the CDE over developmental time suggests that distance effects may be smaller (Lyons,
Nuerk, & Ansari, 2015) or larger (Halberda & Feigenson, 2008; Holloway & Ansari, 2009; Sekuler &
Mierkiewicz, 1977) for symbols learned more recently. However, literature examining SDDEs over developmen-
tal time suggest a stable magnitude across people of different ages (Defever et al., 2012). Priming paradigms
also appear to produce stable distance effect magnitudes across developmental time (Defever et al., 2011;
Reynvoet et al., 2009). These differences, between the stability of the SDDE and the PDE on one hand, and
the variability of the CDE on the other, may stem from the latter’s lack of dependence on access to numerical
magnitude representations.

Literal Symbol Processing

The present study lends additional insight into literal symbol processing of numerical magnitude. An SDDE
when making judgments with literal symbols stands in contrast to prior related work in which literal symbols did
not produce a PDE, while Arabic numerals did (Pollack et al., 2016). Differences in findings across the two
studies may result from methodological differences. It may be that the same-different task required numerical
magnitude processing while the priming task in Pollack et al. (2016) did not, since participants could use a ‘left’-
‘right’ strategy rather than processing numerical magnitudes. Alternatively, same-different and priming numeri-
cal judgments may require a different level or strength of association between symbols and their numerical ref-
erents. Arabic numerals have strong, permanent associations with numerical magnitudes that are overlearned
through formal schooling, whereas associations between literal symbols and numerical magnitudes in authentic
mathematical contexts are temporary. Temporary associations may not be encoded strongly enough to elicit a
PDE as with Arabic numerals, but may be strong enough to elicit an SDDE. Finally, the SDDE and PDE may
arise from different mechanisms, such as a differential reliance on automatic versus intentional processing
(Sasanguie et al., 2011), which could explain the discrepant findings across the two studies.

Even though an SDDE was present for literal symbols for both error rate and response time, the present study
suggests that literal symbol processing involving numerical magnitude may differ from processing with other
symbolic formats. It is expected that same-different judgments would be fastest in the numbers only condition
because of strong associations between numerical magnitudes, Arabic numerals, and number words. However,
when comparing performance between the literal and artificial symbol conditions, participants took longer on
average to make numerical judgments with literal symbols, controlling for distance. Put another way, even
though one would expect a processing cost when recalling newer associations generally, that cost is greater in
magnitude for literal symbols compared to artificial ones. This suggests that the cognitive processing cost that
manifests between the literal and artificial symbols conditions results from literal symbol processing per se.
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What might account for this difference? First, one might argue that the difference in average response time be-
tween literal and artificial symbols may depend on the specific symbols and associations. For example, all sym-
bol-magnitude associations were randomly assigned, which resulted in a numerical magnitude ordering for liter-
al symbols that does not preserve the linear ordering of the alphabet (i.e., Q, G, R, H), which could in turn pro-
duce longer response times. However, this seems unlikely here given that the linear ordering of the alphabet
does not affect performance on the same-different task (Van Opstal & Verguts, 2011). If ordinal positions of let-
ters in the alphabet were to affect numerical magnitude processing, this would suggest one mechanism by
which literal symbols are more difficult to work with in numerical contexts due to their pre-existing associations
from literacy (i.e., ordinal representations). Such hypotheses can be tested explicitly in future studies, for exam-
ple by contrasting performance utilizing symbol-quantity mappings that preserve and do not preserve the ordi-
nality of the alphabet.

Second, the cognitive processing cost associated with literal symbol same-different judgments may reflect ex-
ecutive function ability. While in the present study working memory was not a statistically significant predictor of
performance, inhibition may play a role. Participants may inhibit a literal symbol’s competing representation in
the context of literacy when processing associated numerical magnitude information. Indeed, recent research
has shown that inhibitory control plays an important role in performance on tasks that measure numerical mag-
nitude processing (e.g., Gilmore et al., 2013). Future research can examine whether inhibitory control, meas-
ured in numerical and non-numerical contexts, may mitigate the magnitude of the literal symbol processing
cost.

Limitations

There are several limitations to the present study. First, participants likely had heterogeneous levels of knowl-
edge and instruction related to literal symbols. Participants came from different schools and may have had dif-
ferent (or no) formal instruction related to the role of literal symbols in mathematics (see Nie, Cai, & Moyer,
2009). Second, the participant age range was relatively large, suggesting the sample spanned beginning high
school to beginning college. Age was not a statistically significant predictor of either outcome, which aligns with
prior research on the SDDE (Defever et al., 2012; Duncan & McFarland, 1980). However, there may be differ-
ences in literal symbol processing across age, grade, or level or type of exposure to literal symbols. Future
studies can address this limitation with a cross-sectional study that tests groups of participants from different
grades in the same school, for example, and by confirming with a larger sample size that the covariates tested
in the present study are unrelated to response time. A third limitation pertains to the Arabic numeral and num-
ber word stimuli. As noted in prior studies on symbolic number processing (Peters, De Smedt, & Op de Beeck,
2015), numerosity is confounded with the length of number words, which may affect same-different judgments
when comparing Arabic numerals and number words. For example, ‘1’ is a small numerosity and ‘ONE’ has
relatively few letters, whereas ‘8’ is a larger numerosity and ‘EIGHT’ has relatively many letters. Finally, the
same-different task contrasts performance between different numerosities with Near and Far distances. As
such, this task precludes a fine-grained analysis of distance that is more common to comparison tasks. Howev-
er, same-different tasks eliminate the confound of distance effects that arise from decision-related processes
(Van Opstal et al., 2008). These considerations underscore the importance of task selection when measuring
numerical magnitude processing.
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Conclusion

The present study examined differences in numerical magnitude processing across three symbolic formats. It
focused on differences between literal and artificial symbol processing using same-different numerical judg-
ments. Participants completed three same-different tasks in which they compared Arabic numerals to number
words, literal symbols, or artificial symbols. To work with literal and artificial symbols, participants first associ-
ated these symbols with numerical magnitudes. All three symbol sets elicited an SDDE, evidence of numerical
processing across all symbolic formats. Importantly, same-different judgments with literal symbols took longer
than their artificial symbol counterparts, on average, regardless of distance. These findings suggest that literal
symbol processing of numerical magnitude may engage mechanisms that require additional cognitive process-
ing steps, such as reducing interference from competing representations or processing verbal labels, that are
not required for working with other number symbols.

To learn algebra, students must develop fluency and flexibility with literal symbols, including when they repre-
sent numerical magnitude. The core of this fluency and flexibility is symbol-referent connections, investigated
here in a restricted case, in which literal symbols represented one numerical magnitude as Arabic numerals do.
While persistent student difficulty with literal symbol processing results from myriad factors, the present study
suggests that difficulty partially results from unique, lower-level cognitive processing demands required for ba-
sic processing of literal symbols as symbols that represent numerical magnitude in mathematics contexts. Addi-
tional research can illuminate the nature of such mechanisms and how they impact students’ understanding of
literal symbols, which in turn can support learning in higher-level mathematics.

Notes

i) One participant did not achieve a high level of accuracy for the literal symbols condition (69%). Sensitivity analyses
showed that when the models were fit without this participant, magnitudes and statistical significance of relationships for
distance and symbol set were essentially unchanged. Accordingly, results presented here include all participants.
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