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Abstract

Symbolic number knowledge is strongly related to mathematical performance for both children and adults. We present a model of symbolic
number relations in which increasing skill is a function of hierarchical integration of symbolic associations. We tested the model by
contrasting the performance of two groups of adults. One group was educated in China (n = 71) and had substantially higher levels of
mathematical skill compared to the other group who was educated in Canada (n = 68). Both groups completed a variety of symbolic
number tasks, including measures of cardinal number knowledge (number comparisons), ordinal number knowledge (ordinal judgments)
and arithmetic fluency, as well as other mathematical measures, including number line estimation, fraction/algebra arithmetic and word
problem solving. We hypothesized that Chinese-educated individuals, whose mathematical experiences include a strong emphasis on
acquiring fluent access to symbolic associations among numbers, would show more integrated number symbol knowledge compared to
Canadian-educated individuals. Multi-group path analysis supported the hierarchical symbol integration hypothesis. We discuss the
implications of these results for understanding why performance on simple number processing tasks is persistently related to measures of
mathematical performance that also involve more complex and varied numerical skills.
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Symbolic representations are central to mathematical processing (Deacon, 1997; Nufiez, 2017). Developing ac-
curate and accessible mental representations that capture the relations among number symbols is a central
feature of mathematical skill (De Smedt, Noél, Gilmore, & Ansari, 2013; Merkley & Ansari, 2016; Nieder, 2009).
Early on, children learn to use number symbols to represent cardinal quantities (e.g., how many objects;
Jiménez Lira, Carver, Douglas, & LeFevre, 2017) and ordinal relations (e.g., the counting string, phone num-
bers, addresses, and sporting achievements; Lyons & Beilock, 2013). Subsequently, the same number symbols
occur in arithmetic associations (Fuchs et al., 2006, 2008; Geary, Hoard, Nugent, & Bailey, 2013; Vanbinst,
Ansari, Ghesquiére, & De Smedt, 2016). In this paper we propose and test the Hierarchical Symbol Integration
(HSI) Model, which is based on the assumption that increasing numerical skill is reflected in the patterns of re-
lations among cardinal, ordinal, and arithmetic associations.
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The underlying assumption of the HSI model is that various symbolic number associations become progres-
sively more integrated as mathematical skill increases (Deacon, 1997; Hiebert, 1988; Werner, 1957). Such
number integration can be viewed as a process of combining subsets of associations (e.g., cardinal and ordinal
knowledge) to construct a higher-level understanding of number (Siegler & Chen, 2008). We evaluated this pre-
diction by comparing two groups of adults who vary substantially in their arithmetic performance (i.e., Chinese-
versus Canadian-educated university students). We hypothesized that the Chinese-educated individuals would
show a higher level of integration of number symbol knowledge such that more advanced symbol knowledge
(i.e., arithmetic associations) would mediate the relations between mathematical performance and more basic
symbol associations (i.e., ordinal associations). The HSI model provides a conceptual framework for the finding
that relatively simple numerical tasks (i.e., number comparison, ordinal judgments) are strongly predictive of
performance on a variety of more advanced mathematical measures (Goffin & Ansari, 2016; Lyons & Beilock,
2011; Vos, Sasanguie, Gevers, & Reynvoet, 2017).

Measuring Symbolic Number Competence

Number Comparison

Symbolic number comparison (i.e., which is larger, 3 or 7; Moyer & Landauer, 1967) has been used extensively
to capture individual differences in number processing for both children and adults (De Smedt, Verschaffel, &
Ghesquiére, 2009; Holloway & Ansari, 2008; Schneider et al., 2017; Vanbinst et al., 2016). Solvers consistently
show two effects that reflect quantitative relationships in this task: (a) an effect of distance, in which numbers
that are closer together (e.g., 4 vs. 5) are judged more slowly and less accurately than numbers that are farther
apart (e.g., 2 vs. 7); and (b) an effect of ratio, such that numbers whose quantities are relatively more similar
(e.g., 8 vs. 9) are judged more slowly and less accurately than numbers whose quantities are more distinct
(e.g., 1 vs. 2). Speed and accuracy on the symbolic comparison task is assumed to reflect individual differen-
ces in the mental representation of cardinal associations among number symbols (De Smedt et al., 2009;
Holloway & Ansari, 2008; cf. Maloney, Risko, Preston, Ansari, & Fugelsang, 2010). Vanbinst et al. (2016; see
also Rousselle & Noél, 2007) concluded that performance on the symbolic number comparison task is a central
individual difference that can be used to understand children’s arithmetic learning; as important as phonological
awareness is for understanding individual differences in reading (cf. Gillon, 2017).

Ordinal Judgments

Individual differences in ordinal knowledge have also been linked to individual differences in mathematical skill
(Lyons & Beilock, 2013). The symbolic ordinal judgment task requires that participants decide if three numbers
are ordered (e.g., 1 2 3) or not (e.g., 2 1 3). Lyons and Beilock (2011) reported that, for adults, the speed and
accuracy of the symbolic ordinal judgment task was a stronger predictor of variability in multi-digit arithmetic
performance than symbolic number comparison. Similarly, Lyons, Price, Vaessen, Blomert, and Ansari (2014)
found that symbolic ordinal judgments were the best predictor of arithmetic for children in Grades 3 through 6,
whereas in Grades 1 and 2, number comparison was the best predictor (see also Reynvoet & Sasanguie, 2016;
Vos et al., 2017). These results suggest that the ordinal judgment task captures an even more critical set of
individual differences in symbolic number knowledge than does the number comparison task (Lyons, Vogel, &
Ansari, 2016). Furthermore, the finding that variability in ordinal judgments mediates the relation between num-
ber comparison and arithmetic performance for adults (Lyons & Beilock, 2011; Sasanguie, De Smedt, &
Reynvoet, 2017) is consistent with the assumption of the HSI model — successively more advanced number
symbol associations subsume those acquired earlier.
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Arithmetic

In studies with young children, basic arithmetic facts (e.g., 3 + 4, 7 — 4, 5 x 8) are used as an index of develop-
ing mathematical skill (e.g., Lyons et al., 2014). Learning to associate 2 + 3 to 5 requires that children modify
their existing ordinal associations that link 2 and 3 to 4 (Siegler & Robinson, 1982). Subsequently, they need to
learn that 2 and 3 are associated with 6 when they start learning multiplication. Hence, children learning a new
numerical concept initially go through a process of differentiation (e.g., knowing that 9 is bigger than 7 in magni-
tude is fundamentally different from judging whether 7 comes before 9; Delazer & Butterworth, 1997; Lyons &
Beilock, 2013; Sury & Rubinsten, 2012), and then integration as the new concept becomes connected with the
previously learned associations (Lyons et al., 2016). On this view, existing associations are not replaced but are
integrated within a unified mental structure (Deacon, 1997; Hiebert, 1988; Werner & Kaplan, 1956). Arithmetic
learning involves further development of number symbol associations that have to co-exist with cardinal and
ordinal associations. Consistent with this view of arithmetic acquisition, learning multiplication may temporarily
disrupt children’s access to addition (Miller & Paredes, 1990), and individuals with mathematical difficulties may
have a reduced ability to moderate and control associations among similar elements (De Visscher & Noél,
2014a, 2014b; De Visscher, Szmalec, Van Der Linden, & Noél, 2015).

In older children and adults, fluency (i.e., speed and accuracy) of solving multi-digit arithmetic problems (e.g.,
34 + 57, 23 x 7) is typically used to index arithmetic skill (Lyons & Beilock, 2011; Sasanguie et al., 2017). For
individuals with higher levels of skill, multi-digit arithmetic may also become a primarily associative activity such
that problems can be solved (or associations retrieved) automatically. For example, Imbo and LeFevre (2009)
found that Chinese-educated individuals solved problems such as 58 + 73 faster, more accurately, and with
fewer working memory resources than Belgian- and Canadian-educated adults. For more-skilled individuals, we
hypothesize that multi-digit arithmetic forms the next layer of integrated symbol associations whereas for less-
skilled individuals who use procedural knowledge to calculate answers to these problems, multi-digit arithmetic
associations may not become fully integrated into the number symbol network.

Relations Among Cardinal, Ordinal, and Arithmetic Skill

Among adults, skilled knowledge of cardinal, ordinal, and arithmetic associations reflects the development of
fast and accurate performance in the criterion tasks described above. Because the same number symbols are
used in cardinal, ordinal, and arithmetic tasks, ability to inhibit, suppress, or control the activation of specific
associations must exist (De Visscher & Noél, 2014a; LeFevre & Kulak, 1994). Skilled arithmetic performance,
therefore, must consist of both strong symbol-symbol connections (Lyons, Ansari, & Beilock, 2012; Lyons &
Beilock, 2011; Merkley & Ansari, 2016; Reynvoet & Sasanguie, 2016) and efficient control mechanisms for ac-
cessing appropriate associations and inhibiting inappropriate ones (De Visscher & Noél, 2014a).

Evidence for the Hierarchical Symbol Integration Model

In this paper, we propose a model of the relations among number comparisons, ordinal judgments, and arith-
metic performance in which these tasks all reflect individual differences in the fluency of access to associations
among symbolic numbers. Furthermore, we propose that these various tasks represent stages in the ongoing
integration of the numerical associations into a coherent network. Accordingly, the HSI model captures patterns
of correlations that reflect shared individual differences among symbolic number tasks (Lyons & Beilock, 2013;
Vos et al., 2017). Our proposal is that increasing skill (i.e., fluency) in symbolic number tasks results in an inte-
grated yet differentiable set of symbolic number associations. This pattern of evolving relations was evident in
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cross-sectional studies (Lyons et al., 2014; Sasanguie & Vos, 2018; Xu, 2018): From Grade 2 onwards, ordinal
judgments are a better predictor of arithmetic than number comparison. In essence, individual differences in the
ordinal judgment task mediate the relation between number comparison and arithmetic.

Research using number-matching tasks supports the view that activation of the various associations among
symbolic numbers change over time and vary with arithmetic skill (LeFevre, Bisanz, & Mrkonjic, 1988; LeFevre
& Kulak, 1994; LeFevre, Kulak, & Bisanz, 1991). In the number-matching task, participants see a pair of num-
bers followed by a target and decide if the target matches one of the numbers in the pair. A matching trial would
be “4 5” followed by 4 whereas on non-matching trials, the target is different from both numbers in the pair (e.g.,
4 5 followed by 7. Obligatory activation occurs when the target has an arithmetic association with the number
pair (e.g., 4 5 followed by 9), resulting in slower and less accurate responses than on unrelated targets (e.g., 4
5 followed by 7). Grade 6 children showed obligatory activation of arithmetic associations in the number-match-
ing task whereas Grade 2 children showed obligatory activation only for ordinal associations (e.g., 4 5 followed
by 6; LeFevre et al., 1991). Similarly, adults who were more skilled at arithmetic showed stronger obligatory
activation of arithmetic associations in the number-matching task than less-skilled adults (LeFevre & Kulak,
1994). These findings suggest that arithmetic associations among numbers are integrated with cardinal and or-
dinal symbolic associations as children experience a wider array of symbolic number tasks.

Learning arithmetic is complicated because numbers have multiple associations that need to be differentially
activated depending on the context. De Visscher and Noél (2014b) proposed that hypersensitivity to associa-
tions among symbolic stimuli was related to individuals’ difficulty in learning multiplication facts. A further com-
plication is that, in the absence of direct associations between answers and arithmetic expressions, procedural
solutions will also generate associations, for example, invoking the min strategy by counting on from 4 to solve
2 + 4, or counting by 2s to solve 2 x 4. Similarly, 6 + 7 can be solved by decomposing the operands to 6 + 6 +
1; recognizing that 6 + 7 can be decomposed in this way invokes comparing 6 and 7 and noting their ordinal
association. Accordingly, solvers’ use of procedural solutions may activate many associations, both cardinal
and ordinal, to individual arithmetic facts. Because less-skilled solvers are more likely to rely on procedural sol-
utions (Jordan, Hanich, & Kaplan, 2003; Smith-Chant & LeFevre, 2003), activation of such solutions may main-
tain close relations between these cardinal and ordinal associations and thus interfere with the development of
an associative network that integrates arithmetic associations.

Individuals who can manage competing associations and thus respond quickly in tasks such as ordinal judg-
ments may also develop fast and direct access to arithmetic associations. According to the HSI model, the un-
derlying associations with cardinal and ordinal relations do not disappear but they are no longer the main deter-
minant of individual differences in tasks which include access to number associations as part of the solution
process (e.g., fraction and algebra arithmetic). Instead, arithmetic performance will be the best predictor of
these higher-level mathematical tasks both because arithmetic associations are often relevant in task perform-
ance and because individual differences in arithmetic performance will be representative of the individual’'s abil-
ity to form and access integrated associations. This model of symbolic number integration implies that number
comparisons and ordinal judgments are correlated with arithmetic because all three tasks depend on accessing
an integrated network of symbolic number associations (De Visscher et al., 2015).

Another possible factor in the hierarchical relations among arithmetic, ordinal, and cardinal associations is the
extent to which each task relies on or activates non-symbolic information. Lyons et al. (2012) proposed the intri-
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guing possibility that with extensive experience, number symbols become estranged from the quantities that
they represent, in effect de-emphasizing cardinal (i.e., symbol-magnitude) and strengthening ordinal (i.e., sym-
bol-symbol) associations. On this view, number comparisons involve activating both non-symbolic and symbolic
representations of quantity whereas ordinal judgments may rely purely on symbol-symbol associations (Goffin
& Ansari, 2016). Thus, the activation involved in the ordinal judgment task may be closely aligned to that in
arithmetic tasks, because both types of skills rely heavily on accessing symbol-symbol associations from an in-
tegrated network (Goffin & Ansari, 2016; Lyons & Beilock, 2011; Vos et al., 2017). For example, the processes
involved in retrieving 3 x 4 = 12 may be similar to the processes involved in recognizing that 3 4 5 is a valid
sequence and generating 6 as the next item in the sequence.

The HSI model that we have proposed differs from other accounts of the strong association between ordinal
judgments and arithmetic performance. For example, Lyons and Ansari (2015) concluded that the correlation
they observed between arithmetic and ordinal judgments reflects “an underlying principle of numerical process-
ing—ordinal understanding of number symbols—that drives performance on both the ordering and arithmetic
tasks” (p. 218). However, this conclusion does not explain what that underlying principle is or why it underlies
both types of tasks. Furthermore, it equates performance on one specific task, ordinal judgments, with an un-
derlying cognitive facility, ordinal understanding. In contrast, the HSI model assumes that the underlying princi-
ple that causes the strong correlation between ordinal judgments and arithmetic is that both reflect the extent to
which individuals have developed associative relations among number symbols through practice activating
these associations in a wide range of numerical tasks (De Visscher & Noél, 2014a, 2014b; Rousselle & Noél,
2007; Vos et al., 2017).

Furthermore, the specific pattern of observed correlations depends on the extent to which individuals have de-
veloped an integrated associative network. We stress that integrated, in this context, means that there is a sin-
gle representation that captures all of the learned associations, rather than one in which different networks are
accessed depending on the required task. A fully integrated network allows successful performance of many
related tasks and yet is tuned for specific instances or activities. Just as skilled readers show Stroop effects in
color-word naming (MacLeod, 1991), strong ordinal associations produce characteristic interference in ordinal
judgment tasks. Nevertheless, individuals with the highest levels of skill must balance the relative influence of
obligatory associations to minimize their influence in unrelated tasks (e.g., LeFevre & Kulak, 1994).

In summary, the HSI model shares with other theories the view that symbol-symbol associations are fundamen-
tal to numerical processing tasks (Lyons et al., 2016). It differs primarily in the assumptions about the underly-
ing abilities and skills that drive both the performance on the ordinal judgment task and on the arithmetic tasks
that are used as the primary outcome measures (De Visscher et al., 2015; Vos et al., 2017). In essence, we
propose that the underlying commonalities reflect individual differences in the content and processes of an inte-
grated symbolic associative network that includes cardinal, ordinal, and arithmetic associations and that these
associations become increasingly integrated with practice and the associated increases in relative skill. This
perspective leads us to make specific predictions about the relations among the various symbolic humber
tasks, and their relations with other mathematical measures in which symbolic number knowledge plays a role.

The Present Research

The goal of the present research was to test certain predictions of the HSI model in two different groups of uni-
versity students; one group had completed elementary and secondary school in Canada and the other in China.
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Both groups learned cardinal, ordinal, and arithmetic associations in the course of acquiring mathematical skills
and, although the learning experiences may have been very different, both groups can competently perform
number comparison, ordinal judgment, and arithmetic tasks. We tested three general hypotheses. First, we as-
sessed specific predictions of the symbol integration model by exploring the relations among prototypical num-
ber comparisons, ordinal judgments, and arithmetic tasks. We expected strong correlations among these meas-
ures in both groups, replicating other work (Lyons & Beilock, 2011; Reynvoet & Sasanguie, 2016; Vos et al.,
2017).

Second, we extended the analyses to three other mathematical tasks that are plausibly linked with these funda-
mental skills through access to symbolic number skills. Number line performance (i.e., placing a number on a
line with endpoints marked) is consistently correlated with other mathematical skills and involves knowledge of
the interrelations among symbolic numbers (Schneider et al., 2018). Similarly, fraction and algebra arithmetic
involves additional associations among number symbols beyond cardinal, ordinal, and arithmetic skills (Bailey,
Hoard, Nugent, & Geary, 2012; Torbeyns, Schneider, Xin, & Siegler, 2015). Finally, solving word problems in-
volves symbolic numbers, arithmetic, and other kinds of mathematical knowledge, as well as language skills
(Fuchs et al., 2006, 2008). For each of these other mathematical tasks, we expected that relations between
these measures and number comparisons would be mediated by ordinal judgments for Canadian-educated
adults, on the assumption that the underlying individual differences in symbolic number processing reflected in
the ordinal judgment task would also be linked to individual differences in these other tasks.

Third, we tested the HSI model in a group of adults who were educated in China and compared them to a
Canadian-educated sample. Why is this an interesting comparison? In various studies, Chinese students study-
ing at Canadian universities have been shown to have much better arithmetic skills than Canadian-educated
students (Campbell & Xue, 2001; LeFevre & Liu, 1997; Xu, Wells, LeFevre, & Imbo, 2014); similar patterns hold
for students whose parents were educated in China (Huntsinger, Jose, & Luo, 2016). Because the effect is
cross-generational, it seems most likely that the differences reflect beliefs about the value of learning arithmetic
and the effort put towards becoming skilled, consequently, resulting in faster and more accurate access to basic
facts as well as more competent execution of arithmetic procedures (Campbell & Xue, 2001). However, to our
knowledge, no one has directly compared the performance of these groups of adults on simpler symbolic num-
ber tasks (ordinal judgments, number comparisons), or on other tasks that involve symbolic number knowledge
(i.e., number line estimation, word problem solving, and fraction/algebra arithmetic). Furthermore, the question
of whether the patterns of correlations among these tasks are similar for these two groups has not been ad-
dressed. In the present context, the comparison between Canadian- and Chinese-educated students allowed
us to make predictions based on the proposed HSI model. We expected that the Chinese-educated students
would outperform the Canadian-educated students on all of these tasks. More interestingly, we predicted that
arithmetic fluency (speed and accuracy of access to arithmetic associations) would mediate the relations be-
tween simpler symbolic number tasks and the other mathematical measures for the Chinese-educated adults
because they have higher levels of arithmetic skills.

We tested the HSI model shown in Figure 1 using multi-group path analysis. The proposed path model is a
summary of the predictions that arise from examining the existing literature (among North American and Euro-
pean samples) regarding the relations among the various measures (e.g., Lyons & Beilock, 2011; Lyons et al.,
2014; Vos et al., 2017). The core of the model captures the hierarchical relations among number comparisons,
ordinal judgments, and arithmetic fluency. Integration, according to the HSI model, is reflected in the predictions
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that: (a) ordinal judgment will mediate the relation between number comparisons and arithmetic fluency for both
groups, and (b) for the more skilled group, arithmetic fluency will mediate the relation between ordinal judg-
ments and the other tasks. Accordingly, if ordinal judgments capture the highest levels of associative integration
achieved by the group, both arithmetic fluency and ordinal judgments were expected to uniquely predict all oth-
er numerical tasks that involve symbolic digits (i.e., for the Canadian-educated individuals). This pattern is illus-
trated in Figure 1 (dotted lines and solid lines). In contrast, for the Chinese-educated individuals, we assumed
that arithmetic fluency captures individual differences in associative network, and thus hypothesized that arith-
metic fluency would mediate relations between ordinal judgments and the other three mathematical tasks (solid
lines only).

Number .
: Number line
comparisons
\/
Ordinal Word problem
judgments [ i
\/
Arithmetic '"“ Fractions/algebra
fluency arithmetic

Figure 1. Proposed Hierarchical Symbol Integration (HSI) model. A mediating effect of ordinal judgments on the relations
between number comparisons and all other outcomes were predicted for Canadians (dotted lines and solid lines). The
relations between ordinal judgments and number line, fraction/algebra arithmetic, and word problem solving were expected
to be mediated by arithmetic fluency for the Chinese (solid lines).

Method

Participants

One hundred and forty-two participants were recruited. All participants received a 2% bonus credit towards their
introductory psychology or cognitive science courses or $20. Seventy-one Chinese-educated participants (49
females) had completed elementary and/or secondary school in China. Seventy-one Canadian-educated partic-
ipants (43 females) had completed elementary and/or secondary school in Canada. Age was not significantly
different between the Chinese-educated participants (M = 22.5 years, SD = 1.69) and the Canadian-educated
participants (M = 21.9 years, SD = 1.61), {(137) = -.61, p = .546.

Procedure

Participants were tested individually in a quiet room. Testing lasted for approximately two hours. Participants
were given a short break after an hour of testing. To minimize differences in the task demands across groups,
Canadian-educated participants were instructed in English whereas Chinese-educated participants were in-
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structed in Chinese and each group responded to the verbal tasks (e.g., word problem solving) in their first lan-
guage.

Measures

For the present analysis, we focus on the participants’ performance on number comparisons, ordinal judg-
ments, arithmetic fluency, a 0-7000 number line task, word problem solving, and fraction/algebra arithmetic.
This study was a part of a larger project. The full list of measures that participants completed is shown in the
Supplementary material.

Number Comparisons

The number comparison task was used to measure participants’ ability to decide which of the two symbolic
numbers (from 1 to 9) was numerically larger. Participants were presented with pairs of single-digit numbers
(e.g., 3 4) and they were asked to cross out the larger digit as quickly and accurately as possible. They first
completed three sample items for practice. Following the practice, participants completed two pages of stimuli
(8 2 x 11 inch white paper). Each page consisted of 30 stimuli presented in six rows. A mean score of correct
items-per-second for each page was created using the formula: (number of correct items) / time in seconds. For
example, if the participant completed one page of this task in 30 seconds and made two errors (out of 30), his
or her score for that page would be [(30-2) / 30 = .93] items-per-second. The mean correct items-per-second
score was the average across the two pages. Internal reliability based on performance on the two pages was
high for both Chinese-educated (Cronbach’s a = .95) and Canadian-educated participants (Cronbach’s a = .96).

Ordinal Judgments

The ordinal judgment task was used to measure participants’ ability to judge whether three symbolic digits are
in order or not. Participants were presented with three-digit number sequences and asked to put a “v” beside
the sequences that were in either ascending (e.g., 2 5 9 and 4 5 6) or descending order (e.g., 54 1and 987)
as quickly and accurately as possible. If the number sequences are not ordered (e.g., 2 1 7 and 3 1 2), they
were asked to put a “ X” beside the sequences. Half of these were sequences with adjacent numbers (e.g., 1 2
3 and 4 6 5), and the other half were sequences with non-adjacent numbers (e.g., 4 7 9 and 3 4 8). Participants
first completed six sample items for practice. Then, participants completed two pages of stimuli (8 ¥z x 11 inch
white paper). Each page consisted of 32 stimuli presented in eight rows. A correct items-per-second score was
calculated the same way in the number comparison task. Internal reliability based on the two pages was high
for both Chinese-educated (Cronbach’s a = .96) and Canadian-educated participants (Cronbach’s a = .95).

Arithmetic Fluency

The arithmetic fluency test consisted of three pages of multi-digit arithmetic problems, one page each for addi-
tion (e.g., 34 + 56), subtraction (e.g., 45 - 19), and multiplication (e.g., 74 x 9). There were six rows of 10 ques-
tions on each page, and participants were given a one-minute time limit to write down the answer for each
question from left to right as quickly and accurately as possible without skipping any items. The total correct
score from the three subsets was used as the index of arithmetic fluency. Internal reliability based on perform-
ance on the three subsets was high for both Chinese-educated (Cronbach’s a = .86) and Canadian-educated
participants (Cronbach’s a = .89).
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Number Line

A 0-7000 number line was used to assess participants’ number line estimation ability using an iPad application
(https://hume.calix/estimationline.html). Each number line had “0” at the left end and “7000” at the right end.
The number line was 15.5 cm long. At the beginning of the task, participants were given two practice trials in
which they were asked to take their time to come up with strategies to estimate the locations of numbers on the
line. On each trial, targets were presented one at a time about 7-cm above the line at the top left corner of the
screen. Order of the targets was randomized across participants. Participants were instructed to respond as
quickly and accurately as possible by touching the estimated location of the target number. They located 29
targets including the number 3500, 14 numbers between 0 and 3500, and 14 numbers between 3500 and
7000. No feedback was given regarding the accuracy of their estimates.

The percent of absolute error (PAE) was used as the index of how close (not considering direction) participants’
placement of each number was to the actual location of that number. In particular, the percent of absolute error
was calculated as: PAE = [|(Estimate — Presented Number) / Scale of the Estimate| x 100]. For example, if a
participant estimated the location of 231 at the position that corresponded to 350, the PAE would be 1.7% ||
(231 — 350) / 7000 | x 100)]. Internal reliability was calculated based on the 29 trials was high for both Chinese-
educated (Cronbach’s a = .91) and Canadian-educated participants (Cronbach’s a = .93).

Word Problem Solving

Participants completed the problem-solving subtest from the KeyMath Numeration test (Connolly, 2000). Partic-
ipants were presented with an audio recording and matching images of 16 progressively more difficult ques-
tions. For example, the experimenter asked the participant to “look at these numbers (2 5 11 23 47 __) and tell
me what number comes next in this sequence”. Participants were instructed to answer questions as accurately
and quickly as possible. The total correct score was used as the index of participants’ math problem solving
skills. Internal reliability (Cronbach’s a) based on the 16 questions was .59 for Chinese-educated participants
and .70 for Canadian-educated participants.

Fraction/Algebra Arithmetic

Participants completed a Brief Math Assessment developed by Steiner and Ashcraft (2012) based on the Wide
Range Achievement Test: Third Edition (WRAT3). In this paper-and-pencil test, participants completed ten pro-
gressively more difficult questions that included whole number addition and subtraction, multiplication, and
arithmetic with fractions or algebra. Seven questions on fractions or algebra arithmetic were selected as the
measure of participants’ knowledge of fraction/algebra arithmetic. Scoring was the total number of correct an-
swers on these 7 items. Internal reliability (Cronbach’s a) based on the seven questions was .47 for the Chi-
nese-educated participants and .60 for Canadian-educated participants. The relatively modest levels of reliabili-
ty presumably reflect the small number of items in the test and the variability of the skills required across prob-
lems. The complete WRAT3 test has acceptable reliability and validity (Wilkinson & Robertson, 2006).
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Results

Descriptive Statistics and Correlations

To evaluate whether participants showed the expected group differences in mathematical skills, comparisons
for each task as a function of group are shown in Table 1. The Bonferroni correction of the critical p-level for
significance (p < .008) was used. Chinese-educated participants had higher scores than Canadian-educated
participants on all mathematical measures, with significant differences for ordinal judgments, arithmetic fluency,
word problem solving, and fraction/algebra arithmetic.

Table 1

Performance Differences Between Chinese- and Canadian-Educated Participants

Chinese-educated Canadian-educated t-test
Mean Cohen’s

Measure?® M SD M SD Difference t df P d

Number comparisons® 1.59 0.34 1.47 0.31 +0.12 2.21 140 .028 0.37
Ordinal judgments® 0.73 0.21 0.59 0.19 +0.15 4.35 140 <.001* 0.70
Arithmetic fluency (180) 58.10 14.50 33.72 15.90 +24.38 9.43 140 <.001* 1.60
Word problem solving (15) 12.82 1.88 11.01 2.61 +1.80 4.70 123.15 <.001* 0.80
Fraction/algebra arithmetic (7) 5.69 1.20 4.61 1.60 +1.08 3.57 87 .001* 0.76
Number line® 5.28 2.77 6.33 3.81 -1.06 -1.89 127.69 .061 0.32

aMaximum scores (total possible points) in parentheses. PNumber of correct items per second. °Percent absolute error.
*The Bonferroni correction method was used; p < .008.

Correlations among the various mathematical measures are shown in Table 2. As expected, for both groups,
performance on number comparisons and ordinal judgments was strongly correlated with arithmetic fluency.
Furthermore, for both groups, performance on number comparisons and ordinal judgments was correlated with
word problem solving. However, neither number comparison nor ordinal judgment performance was correlated
with fraction/algebra arithmetic or number line performance for the Chinese group, whereas both number com-
parison and ordinal judgment performance was correlated with fraction/algebra arithmetic and number line per-
formance for the Canadian group. Thus, patterns of relations among the core number skills, that is, number
comparisons, ordinal judgments, and arithmetic fluency, were similar for the two groups, whereas correlations
between core skills and other mathematical outcomes differed across groups.

Table 2

Correlations Among Variables for Canadian- (Above the Diagonal) and Chinese-Educated Participants (Below the Diagonal)

Measure 1 2 3 4 5 6

1. Number comparisons - B3 31 .29* .23* -.38***
2. Ordinal judgments .68*** - .60*** 45 53+ -.53**
3. Arithmetic fluency A4x* 55*** - 46** 57 =37
4. Word problem solving .32 .35** 40 - 55*** =51
5. Fraction/algebra arithmetic .05 19 46 427 - - 42%
6. Number line -.08 -18 -.30* -.33** - 41 -

*p<.05.*p<.01. **p<.001.
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Notably, the two groups barely overlapped in arithmetic fluency: Few Canadian-educated participants were as
skilled as the average Chinese-educated participants (see Figure 2). The comparison between “higher vs. low-
er” arithmetic skill groups using a median split (Mdn = 43) across the whole sample would place more Chinese-
educated participants (82%, n = 58) in the higher-skill group compared to Canadian-educated participants
(21%, n = 15), x3(1, N = 142) = 52.13, p < .001. Therefore, the present dataset is not suitable for testing a com-
parison of groups with different levels of arithmetic fluency — skill is confounded with educational experience.
Instead, a multi-group path analysis was used to test the HSI model for each group by allowing the path
weights to differ across groups. Thus, the location of participants’ early education was used as a proxy for
greater arithmetic skill.
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Figure 2. Distribution of arithmetic fluency for the Canadian- and Chinese-educated participants.

Hierarchical Symbol Integration Model

Multiple-group path analysis using MPlus Version 7 (Muthén & Muthén, 1998-2012) was used to examine
whether differences in the structural parameters were statistically significant across groups. Testing for cross-
group invariance involves comparing two nested models: 1) an unconstrained model in which all paths were
specified in both of the groups, but the coefficients for each of the paths were estimated independently for each
group, and 2) a constrained model where all paths and the coefficients were constrained to be equal across
groups. The unconstrained model yielded an excellent model fit, x2(8)= 7.68, p = .465, SRMR = .025, CFT =1,
RMSEA = 0 (90% CI = [0, .14]), whereas the constrained model yielded an adequate model fit, x?(16) = 23.25,
p =.107, SRMR = .120, CFT = .973, RMSEA = .08 (90% CI = [0, .15]). Comparison of the two nested models
based on a likelihood ratio test showed that the fit of the unconstrained model was significantly better than that
of the constrained model, Ax%(8) = 15.57, p = .049, suggesting that the relations among the core skills (number
comparisons, ordinal judgments, and arithmetic fluency) and the three mathematical outcomes were different
between the Canadian- and Chinese-educated participants. Thus, the fully unconstrained path model was re-
tained for interpretation (see Figure 3).
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Figure 3. Path analyses show relations among variables for (a) the Canadian- and (b) Chinese-educated participants. The
numbers on the arrows are the standardized coefficients. The numbers in the brackets are R2.

*p<.05. *p<.01. **p<.001.

Ouir first hypothesis was that ordinal judgments would mediate the relations between number comparisons and
arithmetic fluency for both groups of participants, replicating Lyons and Beilock (2011) and extending this pat-
tern to skilled Chinese-educated participants. This hypothesis was supported, as shown in Figure 3. For both
Canadian and Chinese groups, number comparisons predicted ordinal judgments, which in turn predicted arith-
metic fluency. The indirect effects from number comparisons to arithmetic fluency were also significant for both
groups of participants (see Table 3), supporting the hypothesis that ordinal judgments mediated the relations
between number comparisons and arithmetic fluency.

Second, we hypothesized that both arithmetic fluency and ordinal judgments would predict the other mathemat-
ical outcomes for the Canadian-educated participants, that is, arithmetic fluency would partially mediate the re-
lations between ordinal judgments and the outcome measures. This hypothesis was supported for five of the
six proposed paths. As shown in Figure 3a, ordinal judgments directly predicted performance on all three of the
math outcomes; arithmetic fluency also predicted performance for word problem solving and fraction/algebra
arithmetic for the Canadian-educated participants. However, number line performance was not predicted by
arithmetic fluency for the Canadian-educated participants. Thus, ordinal judgments and arithmetic fluency con-
tribute independently to performance on the math tasks for Canadian-educated participants; an outcome that
we interpret as evidence that symbolic number knowledge was less integrated for Canadian- than Chinese-
educated individuals.

Third, we hypothesized that arithmetic fluency would uniquely predict the three mathematical outcomes for the
Chinese-educated participants. As shown in Figure 3b, the results were consistent with this prediction. None of
the direct paths from ordinal judgments to the three mathematical outcomes was significant, whereas the indi-
rect effects from ordinal judgments (or number comparisons) to the three math outcomes through arithmetic flu-
ency were significant (see Table 3), supporting the hypothesis that arithmetic fluency mediated the relation be-
tween ordinal judgments and mathematical performance of the Chinese-educated participants. We interpreted
this pattern as evidence that Chinese-educated participants had more integrated symbolic number knowledge
than Canadian-educated participants.
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Table 3

Direct and Indirect Effects (Standardized) of Number Comparisons and Ordinal Judgments on Mathematical Outcomes for Canadian- and
Chinese-Educated Participants

Canadian-educated Chinese-educated
95% CI *® 95% CI°

Direct and indirect effects B LL UL B LL uL
Number comparisons to arithmetic®

(a) Indirect through ordinal .38*** .24 .51 .38*** .22 .48
Ordinal judgments to number line

(a) Total effect -.53*** -.66 -.38 -.18 -.37 .07

(b) Indirect through arithmetic -.05 -.14 .07 -.16* -.28 -.02

(c) Direct effect -.48%** -.67 -.30 .03 -.24 22
Ordinal judgments to word problem solving

(a) Total effect 45%* 22 .62 .35*** .10 .53

(b) Indirect through arithmetic .18** .05 .29 .16 -.00 .30

(c) Direct effect .27* -.01 .53 .20 -.07 .40
Ordinal judgments to fraction/algebra arithmetic

(a) Total effect 52+ .34 .69 19 -.05 .37

(b) Indirect through arithmetic .23 .06 41 .28*** 14 43

(c) Direct effect .30** .06 .57 -.10 -.34 13
aConfidence intervals were calculated with bias-corrected bootstrapping in Mplus (1000 samples). Cl = confidence interval; LL = lower limit;

UL = upper limit.
bThere is no direct effect from number comparisons to arithmetic fluency (i.e., total effect = indirect effect).
*p <.05. *p <.01. **p <.001.

Summary

As predicted, we found that ordinal judgments mediated the relations between number comparisons and arith-
metic fluency (Lyons & Beilock, 2011; Lyons et al., 2014). As shown in Figure 3, the relations among these core
skills were similar for the two groups. The results also extended previous work in showing that ordinal judg-
ments, for the Canadian-educated participants, also predicted the other three math outcomes that involve sym-
bolic digits. These results are consistent with the view that ordinal processes as measured by the simple ordinal
judgment task are related to a range of other mathematical skills in North American adults. In contrast, although
Chinese-educated participants showed a very similar pattern of relations as Canadian-educated adults among
number comparisons, ordinal judgments, and arithmetic fluency, the pattern of direct relations between these
skills and the other math outcomes was different. Arithmetic fluency was the only unique predictor of the three
math measures for the Chinese group (see Figure 3b) and it mediated the relations between ordinal judgments
and these outcomes. These results suggest that the Chinese-educated participants who were more fluent in
accessing associations among symbolic numbers showed a more integrated symbolic network compared to
Canadian-educated participants.

Discussion

Written and spoken number words are symbols that activate multiple associations. The notion that symbol
learning involves creation of complex networks of mental associations has been discussed extensively (e.g.,
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Peirce, 1955 as described in Deacon, 1997; Hiebert, 1988). In the present research, we operationalized a hier-
archical model of integrated symbolic number representations that are involved when people solve mathemati-
cal problems. Previous research suggests that cardinal associations (e.g., 3 > 2) develop first (Colomé & Noél,
2012) and are correlated with more advanced mathematical skills for children (Holloway & Ansari, 2008) and
adults (Lyons & Beilock, 2011). However, ordinal associations (e.g., 1 2 3 is in order whereas 1 3 2 is not) are
increasingly important as number system knowledge develops (Lyons et al., 2014; Vogel, Remark, & Ansari,
2015): Individual differences in ordinal judgments mediate the relations between other basic numerical skills
and complex arithmetic among adults (Lyons & Beilock, 2011). Furthermore, the acquisition of more advanced
mathematical skills requires successive activation of arithmetic associations from a symbolic network represen-
tation of arithmetic facts. For example, solving a fraction problem such as 8 1/2 - 5 1/3 requires activation of
arithmetic associations to convert each operand to an improper fraction, to calculate a common denominator,
and to perform the further necessary calculations. People presumably integrate various associations (e.g., car-
dinal, ordinal, and arithmetic) into a unified structure and can fluently and selectively retrieve the specific asso-
ciations needed to solve specific mathematical problems.

The proposed Hierarchical Symbol Integration (HSI) model captures patterns of individual differences among
measures of symbolic digit knowledge and mathematical performance for adults. The HSI model is based on
the notion that performance on fundamental measures of symbolic processing (hnumber comparisons, ordinal
judgments, and arithmetic fluency) reflects stages in the ongoing integration of the numerical associations into
a symbolic network. On this view, individuals who are more fluent in accessing symbolic number associations
would have more integrated symbolic networks compared to individuals who are less fluent in accessing sym-
bolic associations. To address this issue, we evaluated the HSI by contrasting performance of Canadian- and
Chinese-educated adults who differed in their mathematical performance (e.g., Campbell & Xue, 2001; LeFevre
& Liu, 1997). The distal causes of the skill differences between the Chinese- and Canadian-educated students
are variable, given that several factors may account for the cross-cultural differences in mathematical compe-
tencies such as language and education (Dowker & Nuerk, 2016; Nuerk, Weger, & Willmes, 2005). As with all
cross-cultural work, it was not possible to assess all the potential sources of the differences (e.g., Campbell &
Xue, 2001; LeFevre & Liu, 1997; Muldoon et al., 2011; Siegler & Mu, 2008; Xu et al., 2014). In the present re-
search, we compared the two groups to gain more insight into the consequences of those differences, that is, to
determine whether the differences in relative numerical skill are related to the different phases of the hierarchi-
cal symbol integration processes. As expected, we found that Chinese students outperformed Canadian-educa-
ted students on all of the mathematical tasks. However, the present research went beyond comparisons of
overall levels of performance and captured the inter-relations among the various mathematical measures.

The first prediction of the symbol integration model was supported in that ordinal judgments mediated the rela-
tions between number comparisons and arithmetic fluency for both skill groups (see Figure 2). The second pre-
diction was also supported, in that arithmetic fluency mediated the relationship between the more basic forms
of fluency (number comparisons and ordinal judgments) and other mathematical performance. For the Canadi-
an-educated individuals, both ordinal judgments and arithmetic fluency uniquely predicted fraction/algebra arith-
metic and word problem solving, and the overall effect of ordinal judgments on these outcomes was reduced by
partial mediation through arithmetic fluency. In contrast, for the Chinese-educated students, relations between
the three mathematical outcomes and ordinal judgments were completely mediated through arithmetic fluency,
supporting the view that increasing levels of skill are associated with the development of a more integrated net-
work.
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For Canadian-educated students, the one exception to the pattern of hierarchical mediation was on the number
line task. Only ordinal judgments (not arithmetic fluency) predicted number line performance for this group. The
0-7000 number line is presumably a novel task for all of the participants and there are different possible solu-
tion strategies that could be applied. Adults are generally assumed to use proportional reasoning to locate num-
bers on the line (Sullivan, Juhasz, Slattery, & Barth, 2011), but there is very little information about the specific
strategies that are used (Luwel, Peeters, Dierckx, Sekeris, & Verschaffel, 2018), especially in relation to individ-
uals’ mathematical skills. Less-skilled individuals may use fewer reference points, for example, as they are lo-
cating numbers on the line (e.g., Ashcraft & Moore, 2012). If a solver relied only on the endpoints as referen-
ces, then locating the number in relation to the endpoints may emphasize ordinal relations (e.g., moving up-
wards from zero by counting units of 1000), whereas if additional implicit reference points were used, arithmetic
processes may also be implicated (e.g., calculating the midpoint and then estimating based on the relative dis-
tance between the midpoint and the target location). The present results suggest that the accessibility of ordinal
versus arithmetic associations may influence the strategies that are activated for individuals of different skill lev-
els in this task.

Limitations of the Hierarchical Symbol Integration Model

Although the proposed HSI model provides a framework for understanding patterns of individual differences
among adults for basic and advanced mathematical skills, it does not directly address the question of how vari-
ous associations (number comparisons, ordinal judgments, and arithmetic fluency) unfold over time. Neverthe-
less, a developmental progression is implicit in the increasingly integrated relations among the core skills and
this pattern is consistent with the limited existing work. For example, previous research suggests that cardinal
associations (number comparisons) develop first, followed by the ordinal associations (Colomé & Noél, 2012;
Lyons et al., 2014; Vogel et al., 2015), and arithmetic associations are added as children learn more advanced
symbolic number knowledge. However, there is no longitudinal research that directly examines the develop-
ment of integrated symbolic number knowledge (cf. Xu, 2018). Thus, future research should explore the devel-
opmental course of integration among the various aspects of symbolic number knowledge. This progression
may not be completely linear. For example, Miller and Paredes (1990) found that children’s addition knowledge
suffered when they were intensely practicing multiplication. Contrasting the relative strength of different numeri-
cal associations in the course of development would provide useful information that could inform instruction.

Another limitation of the framework is that it does not include a complete hierarchy of symbolic skills. Many ad-
ditional symbolic relations are formed during the course of mathematical learning that go beyond number sym-
bol connections (Hiebert, 1988); consider variables (e.g., x), operations (e.g., ¥, x), concepts (e.g., ) and rela-
tions (2, =). Only recently have researchers started to ask whether individual differences in symbolic knowledge
are a component of individual differences in complex mathematics (e.g., Headley, 2016). For example, knowl-
edge and familiarity with fraction symbols (e.g., %, 5 Y4, x/2) may be a component of some more complex tasks
(e.g., fraction/algebra arithmetic task used in the present research). Differentiating the accessibility of fraction
symbol knowledge from that for fraction concepts or procedures might help advance our understanding of why
children have difficulty in this domain (Booth & Newton, 2012).
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Conclusions

In the present paper, we proposed a Hierarchical Symbol Integration (HSI) model for numerical associations
and tested the model by contrasting mathematical performance of more- and less-skilled adults. In the present
research, we used culture as a proxy for arithmetic expertise. As predicted by the HSI model, we found that
arithmetic fluency mediated the relations between cardinal (number comparisons) and ordinal knowledge (ordi-
nal judgments), with partial mediation for the less-skilled Canadian-educated adults and full mediation for the
more-skilled Chinese-educated adults. For the Chinese-educated adults, activation of cardinal and ordinal as-
sociations may be automatic and thus no longer a source of individual differences in complex mathematical
tasks; instead, variations in the accessibility of arithmetic representations supersede variability in cardinal and
ordinal associations. These results are consistent with the view that symbolic number knowledge becomes in-
creasingly integrated as individuals experience growth in mathematical expertise. They also suggest that the
accessibility of arithmetic associations form a crucial foundation for subsequent complex numerical processing
among highly skilled individuals. Presumably, skills should be also integrated during learning to allow the hier-
archical associations among different associative connections to evolve in a coordinated way. Accordingly, the
findings have implications for designing math education curricula: Children may need to practice and gain fluen-
cy with a range of symbolic number associations to develop a strong symbolic network that supports the ac-
quisition of more advanced mathematical skills (LeFevre, Douglas, & Wylie, 2017).
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