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Abstract

Basic numerical abilities are generally assumed to influence more complex cognitive processes involving numbers, such as mathematics.
Yet measuring non-symbolic number abilities remains challenging due to the intrinsic correlation between numerical and non-numerical
dimensions of any visual scene. Several methods have been developed to generate non-symbolic stimuli controlling for the latter aspects
but they tend to be difficult to replicate or implement. In this study, we describe the NASCO method, which is an extension to the method
popularized by Dehaene, |zard, and Piazza (2005). Their procedure originally controlled for two visual dimensions that are mediated by
Number: Total Area and Item Size (i.e., N = TA/IS). Here, we additionally propose to control for another twofold dimension related to the
array extent, which is also mediated by Number: Convex Hull Area and Mean Occupancy (i.e., N = CH/MO). We illustrate the NASCO
method with a MATLAB app—NASCO app—that allows easy generation of dot arrays for a visually controlled assessment of non-symbolic
numerical abilities. Results from a numerical comparison task revealed that the introduction of this twofold dimension manipulation
substantially affected young adults’ performance. In particular, we did not replicate the relation between non-symbolic number abilities and
arithmetic skills. Our findings open the debate about the reliability of previous results that did not take into account visual features related to
the array extent. We then discuss the strengths of NASCO method to assess numerical ability, as well as the benefits of its straightforward
implementation in NASCO app for researchers.
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In 1997, Dehaene formulated that humans possess a Number Sense—a biologically determined ability allowing
the representation and the manipulation of large numerical quantities. Most authors currently consider that
such numerical intuition relies on a cognitive system specifically dedicated to number processing (following
Feigenson, Dehaene, & Spelke, 2004). This view is supported by extensive empirical evidence showing that
humans can discriminate numerical quantities from early age (Xu & Spelke, 2000), with limited knowledge of
number words (Pica, Lemer, lzard, & Dehaene, 2004), or without formal instruction (Nys et al., 2013). Recent
studies further supported this perspective by showing that humans have a spontaneous preference for the
numerical aspect of large sets rather than for other continuous visual features (Cicchini, Anobile, & Burr, 2016;
Ferrigno, Jara-Ettinger, Piantadosi, & Cantlon, 2017). Notwithstanding such findings, some authors challenged
the existence of a specific cognitive system devoted to numerical processing and alternatively ventured that
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Number Sense emerges from the combined weighting of continuous perceptual dimensions available in visually
displayed stimulus collections (Gebuis, Cohen Kadosh, & Gevers, 2016; Leibovich, Katzin, Harel, & Henik,
2016).

The debate about the Number Sense nature is still ongoing (see Nuiez, 2017, for an interesting view) because
there is a peculiar methodological issue relative to non-symbolic number comparison tasks: it is empirically
impossible to isolate the cognitive processes specifically dedicated to numerical discrimination from those
related to other continuous magnitude discrimination. The numerosity (i.e., the information about the number
of elements) is indeed intrinsically intertwined with non-numerical magnitudes, such as the luminance or the
extent of the array (see for instance, Gebuis & Reynvoet, 2012). Previous studies showed that numerical
judgments are substantially impacted by the total surface occupied by all items (Guillaume, Nys, Mussolin, &
Content, 2013), by the individual size of the elements (Henik, Gliksman, Kallai, & Leibovich, 2017), by the item
density (Dakin, Tibber, Greenwood, Kingdom, & Morgan, 2011), and by the size of the convex hull (CH) (i.e.,
the smallest convex polygon encompassing all elements; Norris, Clayton, Gilmore, Inglis, & Castronovo, 2018).

Critically, empirical data showed that the procedure used to handle the correlation issue between magnitudes
considerably influences participants’ judgments, and subsequently the measurement of approximate numerical
ability (Smets, Gebuis, Defever, & Reynvoet, 2014; Smets, Sasanguie, Szlics, & Reynvoet, 2015). A recent
meta-analysis confirmed that the measure of participants’ precision during numerical comparison tasks is
tightly related to the generation algorithm used to create dot arrays (Guillaume & Van Rinsveld, 2018). This is
worrying since the reliable but moderate association observed between approximate numerical discrimination
and math ability (Schneider et al., 2016) might be drastically affected by the way non-symbolic stimulus sets
are created (Norris & Castronovo, 2016; see also, Clayton, Inglis, & Gilmore, 2018).

Designing Non-Symbolic Number Stimulus: NASCO Method

Piazza, lzard, Pinel, Le Bihan, and Dehaene (2004) were among the first authors to design a non-symbolic
number comparison task tackling this methodological issue. Their publication was shortly followed by an unpub-
lished document, which we will refer to as Dehaene et al. (2005)'. This document describes how the authors
manipulated two critical perceptual dimensions that are intrinsically related to Number (N): the Individual Size
(IS) and the Total occupied Area (TA). It is noteworthy that in their method, the size of every item within an
array was homogeneous (i.e., all geometrical forms had the exact same perimeter, area, and circumference). It
follows that the total area covered by the dots—in pixels—is exactly equal to the number of pixels within each
dot times the number of dots. One could rewrite the previous expression as follows: Number is equal to the
total area occupied by the dots divided by their individual size of the dots, or N = TA/IS.

The main property of the relation between TA and IS is its proportionality: for a given N, if we reduce IS,
TA decreases. This natural relation between TA and IS becomes problematic when one wishes to specifically
manipulate N, which is the case in research on numerical abilities. In particular, any change on numerosity
systematically impacts one of the continuous dimensions, since a x N = a x (TA/IS). To take this relation into
account, Dehaene and colleagues proposed to keep one dimension constant while letting the other freely vary.
For instance, doubling N implies either to double TA and to keep IS constant [2N = 2 TA/IS], or alternatively to
divide IS by two and to keep TA constant [2N = TA/(IS/2)]. Dehaene and colleagues suggested keeping one
dimension constant for half of the items, and the other dimension constant for the other half, so that participants
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could not reliably respond based on these dimensions. Participants would indeed perform at chance level if
they systematically responded following a given single dimension.

In the original document from Dehaene et al. (2005), the authors only took into consideration the above-men-
tioned relation, N = TA/IS. Here we complement the initial approach by suggesting to consider in a similar
manner another relation between two perceptual dimensions intrinsically mediated by Number: CH area and
Mean Occupancy' (MO), considering N = CH/MO. In the continuity of the work by Dehaene and colleagues,
one can control for these dimensions either by keeping CH constant and letting MO vary with N, or alternatively
by keeping MO constant and letting CH vary with N. Critically, both CH and MO are independent from TA and
IS, considering the physical constraint that CH needs to be greater than TA (and MO needs to be greater
than IS) to avoid overlapping dots. In other words, for any given values of N, TA, and IS, we can theoretically
construct arrays with infinite different values of CH and MO, as long as CH > TA and MO > IS. For instance, we
could draw ten 10 px dots, occupying in total 100 px, close together within a CH of 500 px for a MO of 50 px,
or alternatively we could draw the same dots within a larger space, such as a CH of 5,000 px for a MO of 500
px. By crossing the relation between TA and IS to the relation between CH and MO, it is possible to manipulate
and objectively measure the relative contributions of these four major visual properties to non-symbolic number
comparison decisions, with N = TA/IS = CH/MO. Figure 1 illustrates how we can define four categories built
from the crossing of two relations mediated by Number. One can thus generate four categories of dot arrays,
each for a quarter of the stimulus set.
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Figure 1. llllustration of stimuli pairs.

Note. Each dot array pair belongs to one of the four categories, depending on the manipulation of two bi-dimensional
factors. As in Dehaene et al. (2005), either Total Area (TA) or ltem Size (IA) is kept constant between both arrays of a pair;
the other dimension varies with numerical change. Additionally, either Convex Hull (CH) or Mean Occupancy (MO) is kept
constant between both arrays of a pair; the other dimension varies with numerical change. All array pairs of the figure
contain 30 versus 19 dots.

We name our dot generation method NASCO, as it controls for Number, Area, Size, Convex hull, and Occupan-
cy. In the continuity of existing methods, NASCO aims at manipulating the unwanted visual dimensions in a
more satisfying way than the original procedure suggested by Dehaene et al. (2005). Amongst these methods,
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one could refer to the study by Holloway and Ansari (2009) who manipulated the density of the array (but not
CH) in addition to TA and IS; or to the study by Mussolin, Nys, Leybaert, and Content (2012) who displayed
collections of elements of a more complex nature in order to heterogeneously vary IS. More recently, Salti,
Katzin, Katzin, Leibovich, and Henik (2017) also took into account CH, and the density (i.e., 1/MO), but they
viewed both as being indices of the same extrinsic dimension (i.e., the extent). Consequently, the method from
Salti and colleagues does not allow specifically manipulating CH or MO, while our method does because it
considers them separately.

Another elegant procedure to disentangle numerosity from other non-numerical dimensions is the modeling
approach of DeWind, Adams, Platt, and Brannon (2015). The authors considered the same relation between
the dimensions as we do: they grouped TA and IS within a dimension called “Size,” and they categorized
CH and MO (called sparsity in their study) within a dimension called “Spacing.” They proposed to create
stimulus sets across which the numerical dimension is kept orthogonal with (i.e., independent from) “Size” and
“Spacing.” In other words, the authors decided to model composite dimensions resulting from the combination
of the related visual dimensions (on one hand, IS and TA; on the other hand, CH and MO), whereas in NASCO
method we choose to explicitly emphasize the proportional nature of their relation in an ecological manner. We
made this decision because “Size” and “Spacing” dimensions do not actually refer to any real percept (which is
in line with the absence of brain responses to any of these mathematically constructed dimensions reported by
Park, 2018). Furthermore, this sophisticated procedure is difficult to implement since it should be joined with an
adapted computation of the Weber Fraction that disentangles the numerosity contribution from the respective
contributions of the two orthogonal dimensions. It is additionally difficult to replicate since the authors did not
provide any script to generate dot arrays with this method.

Creating Non-Symbolic Number Stimulus With NASCO App

In the previous section, we discussed the methods used to design non-symbolic number stimulus sets. In this
section, we focus on software solutions allowing the creation of dot arrays (i.e., the generation and presentation
of image files). We will not further develop how the script from Dehaene et al. (2005) works since we previously
provided its rationale in details. We rather describe and discuss two well-designed generation algorithms.

First of all, we need to mention Panamath (Halberda, Ly, Wilmer, Naiman, & Germine, 2012), which is one
of the most (if not the most) commonly used programs in the literature (see Guillaume & Van Rinsveld,
2018). Panamath is a ready-to-use non-symbolic number comparison task, which generates dot arrays at the
beginning of each recording session. A first practical limitation is that Panamath does not allow exporting
dot arrays outside the recording session, so it cannot be used to generate image files. Secondly, Panamath
generates by default’’ dot arrays in a very similar way than Dehaene and colleague’s method: half of the trials
have (on average) the same Item size, while the other half have (on average) the same TA. We specify “on
average” as Panamath differs from the original Dehaene’s script in a way that dot sizes are heterogeneous
within an array: Panamath indeed allows a random variation of each individual ltem Size of maximum 20% of
the mean size. Critically, since Panamath follows Dehaene et al.’s (2005) method, it has the same limitations
(see Clayton et al., 2018; Dakin et al., 2011; Norris & Castronovo, 2016; Norris et al., 2018). In other words,
Panamath does not control for the array extent and the density within the image (i.e, CH and MO). There is no
such parameter that the user can access to manipulate these dimensions.
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The generation algorithm of Gebuis and Reynvoet (2011) on the other hand considered similar visual dimen-
sions as we do in the current study: TA, IS, CH, and density (i.e., 1/MO). It should be noted that their program
generates stimuli where dots have different sizes within an array, so that the authors also distinguish mean
circumference from mean diameter, while both are confounded in our design since all dots have the same size
within a given array. The main characteristic of Gebuis and Reynvoet's algorithm is that it automatically gener-
ates pairs of dot arrays in which each of the controlled dimensions is congruent with the number of elements for
half of the set, and incongruent for the other half. In other words, for non-symbolic number comparison tasks,
the program creates blocks of pairs where the more numerous array occupies the larger surface in 50% of the
cases, but where it occupies the smaller surface in 50% of the cases (and similarly for the other dimensions
under consideration). Across dimensions, a stimulus can be fully or partially (in)congruent. It is noteworthy that
this process is completely automatized across the stimulus set; the user cannot manually set the nature of the
relation between the visual cues for a given pair. Further, the script only considers non-numerical dimensions to
be either congruent or incongruent, and the user cannot specify to which degree a given array should be more
or less (in)congruent. This point is an important limitation since non-numerical ratio effects on the numerical
judgement have been reported for area (e.g., Guillaume et al., 2013; Nys & Content, 2012) and CH (Gilmore,
Cragg, Hogan, & Inglis, 2016).

NASCO app aims at overcoming the latter issue by highlighting the intrinsic relation between the visual
dimensions in a simple way, so that the user can easily create stimulus sets. It is important to note that
NASCO app emphasizes the proportional relation between all dimensions: since N = TA/IS = CH/MO, then a
x N =a x (TAIS) = a x (CH/MO). As a function of the user preference, doubling N will either double TA or
divide IS by two, and will either double CH or divide MO by two. Within a stimulus pair, the numerical ratio
is thus systematically equal to the ratio of the changing continuous dimensions. This implies that the weight
of all continuous dimensions changes is necessarily and objectively the same as the weight of the numerical
changes.

NASCO app has three functionalities: First, in the single array creation mode, and thanks to the straightforward
relation between all considered numerical and non-numerical dimensions (N = TA/IS = CH/MO), the user can
specify the value of each dimension, and NASCO directly shows how any change on a given dimension affects
other dimensions. To create a stimulus set, the user can (for instance) specify for each array the desired
Number of dots (N), their IS, and their CH. The values of the other dimensions—in this case, TA and MO—uwiill
automatically be computed based on the introduced values. For instance, if the user wants to generate arrays
with one hundred 10 px dots within an area of 100,000 px, they just need to introduce N = 100, IS = 10,
and CH = 100,000; NASCO will automatically illustrate that TA = 1,000, and MO = 10,000 in this case. The
second mode allows the user to generate pairs of dot arrays: here they only need to specify the characteristics
of one array (i.e., Number and other visual dimensions) and NASCO will automatically fit the properties of
the second array as a function of the desired control parameters (either TA or IS constant, and either CH
or MO constant). This functionality is illustrated in Figure 2. Finally, the third functionality allows automatized
generation and display processes, in which the user only needs to enter the wanted numerical quantities.
NASCO will then automatically generate the stimulus set and will be ready for displaying them and recording
participants’ responses. Both the generation code (created with MATLAB, The MathWorks) and the NASCO
user interface are freely available at https://osf.io/faxmw2/.
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Figure 2. Interface of the Array Pair Generation tab from the NASCO app.

Note. The interfaces of the other two tabs are available in Supplementary Material.

In the current study, we illustrate the use of NASCO app by generating dot arrays with it as described in the
previous section. We want to emphasize that the use of NASCO app is not limited to the generation of dots that
follows the NASCO method. Since the user can set the four visual properties at its own discretion, it is possible
to generate dot arrays following other recommendations. For instance, NASCO app can generate arrays
following DeWind et al. (2015) recommendations, or alternatively can create congruent and incongruent trials
as in Gebuis and Reynvoet (2012). Regarding the last possibility, since NASCO app emphasizes the relation
between the visual dimensions, the user can specifically define to which degree each trial is (in)congruent ,
which overcomes the limitations of Gebuis and Reynvoet’s original script.

Empirical Evaluation of NASCO Method: Objectives and Hypotheses

We conducted an empirical study to assess the NASCO method on actual participants. The objectives of this
study were twofold. Firstly, we aimed at providing a methodological evaluation of the non-symbolic stimuli
designed by NASCO method and generated with NASCO app. We used these stimuli in a numerosity judgment
task where participants were instructed to respond to the most numerous dot array. Since we aimed at
assessing the approximate numerical ability of the participants, we expected to observe a numerical ratio
effect (i.e., increasing performances with increasing numerical ratio between the two magnitudes under consid-
eration). More critically, the additional manipulation of CH and MO in our stimuli compared to previous research
allowed us to directly verify whether these dimensions affected behavior. In line with Gilmore et al. (2016), we
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expected substantial influences on numerical judgment. If this were the case such results would challenge the
conclusions of previous studies that did not control for these additional visual dimensions.

Secondly, we aimed at identifying the domain-general cognitive abilities related to numerical comparison tasks
under investigation. Some authors indeed surmised that the different procedures to generate dot arrays in
numerical comparison tasks involve different cognitive processes, such as inhibitory control (Clayton & Gilmore,
2014). Somewhat related, inhibitory control was shown to correlate with math achievement (Gilmore et al.,
2013). To shed further light on this issue, participants underwent a variety of cognitive tasks assessing abilities
reported to be closely related to mathematical skills: arithmetic problem solving, symbolic number processing,
and executive functions (Archambeau & Gevers, 2018; Stevenson, Bergwerff, Heiser, & Resing, 2014). In
this exploratory approach, we aimed at assessing whether comparison performances using our adapted
stimuli were specifically related to math ability and symbolic numerical cognition, or alternatively related to
domain-general cognitive abilities.

Method

Ethical Considerations

We followed APA ethical standards to conduct the present study. The Ethic Review Panel from the Université
Libre de Bruxelles approved the methodology and the implementation of the experiment before the start of data
collection.

Participants

Seventy-two undergraduate students participated in exchange of course credits (58 women, mean age was
20.36 years). Participants did not report any uncorrected visual impairment or any math disability (or history
of math learning disability). In our analyses, we had to exclude one participant who failed responding to the
inhibition task due to severe misunderstanding of the instructions (she systematically responded to the no-go
trials while never responding to the go trials), for a final sample of seventy-one participants.

Apparatus

Participants were tested in a large room in groups of five to six people, for an approximate duration of 45
minutes. Each participant sat in front of a computer screen, isolated from the other ones with the help of
separation panels. All tasks except the paper-and-pencil arithmetic test were displayed on a computer screen
with MATLAB (The MathWorks), using the Psychophysics Toolbox extension (Brainard, 1997; Kleiner et al.,
2007; Pelli, 1997). All participants started with the arithmetic test, and then took part in the computer tasks,
whose order was randomized across participants. Each computer task started with several trials with feedback
as examples, which were not comprised in the analyses. Stimuli were displayed on a 19-in screen with a pixel
resolution of 1,280 x 1,024 px. Responses were recorded through an ioLab Systems button box. All statistical
analyses were conducted with the Ime4 package (Bates, Maechler, Bolker, & Walker, 2015) for R (R Core
Team, 2016).
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Arithmetic Test

We assessed arithmetic fluency with the Tempo-Test Rekenen (TTR, De Vos, 1992). This timed paper-and-pen-
cil arithmetic test consists in five columns of 40 arithmetic problems. The item difficulty increases throughout
the test, from single-digit arithmetic facts such as 2 + 1 to more complex two-digit problems such as 54 + 27.
The five columns of the TTR encompass one column per operation (addition, subtraction, multiplication, and
division) and a final column mixing all operations. For each column, participants are instructed to write down as
many correct responses as they can in 1 minute. Participants are awarded one point per correct answer. The
maximum score of this test is 200.

Non-Symbolic Stimuli and Experimental Task

We specifically generated non-symbolic stimulus pairs by using NASCO app (see Introduction). We generated
192 dot array pairs divided in four stimulus categories of 48 pairs each, see Figure 1. We took arrays of 30
dots as the standard numerosity to which the second array was compared. We created the second arrays by
computing six numerical ratios (from 1.1 to 1.6 with an incremental step of 0.1) starting from the standard nu-
merosity in both increasing and decreasing directions. Crucially, by design, there were thus six non-numerical
ratios, since the ratios of the changing continuous dimensions were equal to the numerical ratios. The number
of dots ranged from 19 to 48, and there were 32 pairs for each ratio (i.e., 16 where the other numerosity was
below 30, and 16 where it was above 30). All dots had the same size within an array. Across the stimulus set,
mean IS was 547 px, Range (R) [348, 860 px]; mean TA was 16,420 px, R [10,239; 25,975 px]; mean CH was
11,2276 px, R [69,674; 178,389 px]; and mean MO was 3,746 px, R [2,287; 5,895 px]. The position of the more
numerous dot array of the pair (i.e., the correct response) was randomly assigned to the left or to the right
throughout the experiment.

We presented pairs of dot arrays and participants were instructed to determine as accurately as possible the
array that contained the greater number of dots, by pressing the button on the side of the larger quantity. The
onset of each trial was preceded by a fixation cross appearing 500 ms before the dots. Although speed was
not emphasized, the dot arrays only remained on the screen for a maximal duration of 800 ms; they were then
suppressed by an active mask displayed until participant’s response. The mask was followed by a blank screen
for 400 ms, for an inter-stimulus interval of 900 ms (including the fixation cross). We analysed both accuracies
and response times, but we only considered Correct Response rates (CR) for correlation analyses since they
sufficiently depicted the performance at this task. We did not compute the Weber fractions, as recent evidence
suggested they are not more informative than accuracies (Guillaume & Van Rinsveld, 2018; Inglis & Gilmore,
2014).

Symbolic Comparison

We assessed symbolic number processing with a number symbol comparison task similar to the one by
Holloway and Ansari (2009). Participants had to compare seventy-two pairs of single-digit numbers ranging
from 1 to 9. Both digits were simultaneously displayed on both sides of the screen. Participants were instructed
to press the button corresponding to the side of the larger digit as quickly and accurately as possible. The
numerical distance within digits of the pairs ranged from one to six, resulting in 12 pairs per distance. We
considered the Inverse Efficiency Score (IES, Townsend & Ashby, 1978) in our analyses to consider both
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accuracies and response times. We computed individual /ES by dividing the mean response time of each
participant by his/her mean correct response proportion.

General Processing Speed

We evaluated general processing speed with a match-to-sample task (for a similar task see Hoffmann,
Mussolin, Martin, & Schiltz, 2014). Participants were instructed to rapidly compare one central target shape
(either a circle or a diamond) to two possible solution shapes simultaneously displayed at the left and at the
right of the screen. They had to identify as quickly as possible the solution shape that was identical to the target
by pressing the leftmost or the rightmost button of the response box. We considered average Response Times
(RT) to the correct trials as the general processing speed.

Visuo-Spatial Working Memory

We assessed visuo-spatial Working Memory (VSWM) because of their well-documented link to the acquisition
of number skills (Cornu, Schiltz, Martin, & Hornung, 2018; Geary, 2011). We adapted a paradigm based on
the no-grid task by Martin, Houssemand, Schiltz, Burnod, and Alexandre (2008). In this task, participants
were instructed to remember the spatial locations of black dots briefly and sequentially displayed on a 4 x
4 invisible grid (16 possible locations). After each dot sequence, a fixed configuration consisting of the same
number of dots was displayed. Participants had to evaluate whether the given configuration was identical to the
spatial locations of the dots previously presented. Half of these configurations corresponded to the preceding
sequence; the other half differed in the location of one dot from the sequence. Participants were asked to
press the leftmost button if the given configuration was identical to previous series, or the rightmost button if
otherwise. Critically, the number of dots to be memorized—and thus the WM load—progressively increased
throughout the task, from 3 to 6 dots within one sequence. There were 36 trials in total. In the correlation
analyses, we computed the sensitivity index by subtracting the False Alarm rate (FA) from the Hit Rate (HR) to
have an individual measure of the visuo-spatial WM (d’ = Z(HR) — Z(FA), Macmillan & Creelman, 2005).

Inhibition Task

To assess inhibitory control, we adapted the task of Georges, Hoffmann, and Schiltz (2016). This task involves
inhibition processes at two different levels because participants perform a Stroop-like judgement (Stroop, 1935)
following Go/No-go instructions. More specifically, there were experimental and catch trials: On experimental
trials, a colored horizontal arrow pointing either to the left or to the right was presented. On catch trials, a
colored diamond was displayed for two seconds before the start of the next trial. There were 60 experimental
trials, and 16 catch ones. Participants were instructed to respond to the color of the arrow irrespective of its
direction and to refrain from responding to the diamond. Critically, the buttons matching the color of the shape,
red and blue, were respectively on the leftmost and on the rightmost side of the response box. The irrelevant
spatial dimension (i.e., the direction of the arrow) was congruent with the response laterality for half of the
trials, and incongruent for the other half. In the correlation analyses, we computed the /ES (Townsend & Ashby,
1978) by dividing the congruent and incongruent response times by their corresponding proportion accuracies.
Finally, to get one inhibition measure per participant, we calculated /ES differences between congruent and
incongruent trials (A IES). A greater A IES reflected worse performance on the latter than on the former,
showing lower inhibition performances.
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Results

Control Tasks

Descriptive statistics for all control tasks are summarized in Table 1. The paper-and-pencil arithmetic test only
produced a raw score for each participant as it was timed. Table 1 further reports general accuracy and mean
correct RT for the computerized control tasks, and the additional measures computed for the symbolic digit
comparison task, the VSWM task, and the Inhibition task (IES, d’, and A IES).

Table 1

Descriptive Statistics for Control Tasks

Task / Measure M SD 95% CI

Symbolic comparison

Accuracy .965 .183 [.960, .970]

Correct RT 0.453 0.155 [0.449, 0.458]

IES 0.468 0.064 [0.452, 0.483]
Arithmetic test

Raw score (out of 200) 128 23 [122, 133]
General processing speed

Accuracy .956 .204 [.945, .966]

Correct RT 0.527 0.137 [0.520, 0.535]
Visuo-spatial WM

Accuracy .763 425 [.746, .779]

Correct RT 1.903 1.426 [1.840, 1.966]

d 1.675 0.944 [1.451, 1.898]
Inhibition

Accuracy .960 194 [.955, .965]

Correct RT 0.649 0.340 [0.640, 0.658]

A IES 66.478 67.424 [50.519, 82.437]

Note. IES = Inverse Efficiency Score; RT = Response Times; WM = Working Memory. Accuracies are
depicted in proportion from 0 to 1; Correct Response Times are expressed in second.

Non-Symbolic Numerical Magnitude Judgments

Overall, participants correctly detected the more numerous array of dots in 89% of the cases, 95% CI [88.6,
89.6], with an average latency of 657 milliseconds, 95% CI [650, 664]. As expected, the numerical ratio affected
performance; for the smallest ratio (i.e., 1.1), performances dropped to a mean accuracy of 77%, 95% CI [75.3,
78.7], and mean correct RT increased to 754 milliseconds, 95% CI [739, 770]. Conversely, the largest ratio
(1.6) led to the best performance, with a mean accuracy of 97%, 95% CI [96.3, 97.7] and mean correct RT at
602 milliseconds, 95% CI [592, 613]. More relevant to the purpose of the current study, the stimulus properties
significantly affected performance. The effects of the experimental manipulations are depicted on Table 2.
Participants performed the non-symbolic magnitude judgments better when TA and CH were confounded (i.e.,
not constant) with number.
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Table 2

Behavioral Performances (i.e., Accuracy and Correct RT) During the Non-Symbolic Comparison Task as a Function of the Stimulus
Dimensions (Total Area/Dot Size in One Hand, Convex Hull/Mean Occupancy in the Other Hand) That Were Confounded (i.e., Not
Constant) With Number

First dimension confounded Second dimension confounded Accuracy Correct RT

Total area Convex Hull .944 [.937, .952] 618 [604, 632]
Total area Mean Occupancy .894 [.884, .904] 647 [637, 658]
Dot size Convex Hull 1913 [.903, .922] 669 [648, 689]
Dot size Mean Occupancy .813 [.800, .826] 701 [689, 712]

Note. RT = Response Times. Accuracies are depicted in proportion from 0 to 1; Correct Response Times are expressed in millisecond.
Brackets indicate 95% CI.

We analysed the statistical effects of both numerical ratio and stimulus properties with linear mixed effect
models. We constructed two full models (i.e., one for accuracy, one for latency) with both numerical ratio
and stimulus properties as fixed effects (without interactive form), and with participants as random factor and
random intercept. We used logistic regression to model accuracy. We inspected the residual plots for latency
models to ascertain that there were no obvious deviations from homoscedasticity or normality. To assess the
significance of each main factor, we compared the full models to two reduced models without the factor in
question using chi-square tests on the log-likelihood values. The full models fitted significantly better than the
models without the numerical ratio factor, x2(5) = 758.06, p < .001, and x2(5) = 208.06, p < .001, for accuracy
and latency respectively; meaning that the ratio significantly impacted performances. Stimulus properties also
had a significant effect, as the full models were significantly better than the reduced ones, ¥2(5) = 374.07,
p < .001, and x%(9) = 103.26, p < .001. Finally, we assessed interactions between the two main factors by
comparing both full models with and without interactive form. The interaction was significant for accuracy, x2(4)
=31.92, p < .001, see Figure 3, but it was not for correct RT, x%(4) = 4.132, p = .388.

Overall, participants performed significantly better when TA and CH were confounded with number. We further
looked at performance across all trials to disentangle the impact of these two cues. On one hand, we grouped
all trials where TA varied with numerosity (irrespective of CH/MO, lower part of Figure 1), and on the other
hand, we grouped all trials where CH varied with numerosity (irrespective of TA/IS, right part of Figure 1).
We found that participants correctly responded to items in which TA was confounded with number in 91.6%
of the cases, 95% CI [91.3, 92.6], in 632 ms, 95% CI [623, 641], whereas they correctly responded in 92.8%
of the cases, 95% CI [92.2, 93.5], in 643 ms, 95% CI [631, 655] for trials in which CH was confounded.
The comparison of confidence intervals reveals that accuracies (but not latencies) were significantly different
between the conditions, which supports that CH had a more beneficial effect than TA. This finding is in line with
previous results that CH has a stronger impact than total area on numerical judgments (Gilmore et al., 2016).
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Figure 3. Mean accuracy (in proportion) as a function of the numerical ratio and depending on the visual dimensions that
were confounded (i.e., not constant) with number. Dotted vertical lines depict 95% CI.

Correlations Analyses

We considered one measure per task to conduct correlation analyses: mean CR rates of the non-symbolic
magnitude judgments, raw scores of the arithmetic test, and latencies of the general processing speed task.
For the other tasks, we computed other measures that combined response times and accuracies (/ES, in
symbolic digit comparison task), one that considers task specificities (d in the VSWM task), or both (A IES in
the inhibitory control task). We focused on Kendall's 1 correlation coefficient between the variables, as it was
shown to be robust to outliers (Croux & Dehon, 2010). Table 3 summarizes the coefficients.

Correlational analyses revealed that performances of non-symbolic magnitude judgments did not correlate
significantly with arithmetic performances, 1 = .007, N = 71, p = .928, nor with symbolic magnitude judgments,
T=-.032, p = .690, nor with general processing speed, T = —-.081, p = .320. We nonetheless found significant
correlations between non-symbolic magnitude judgments’ accuracy and both VSWM, 1 = .247, p = .003, and
inhibition, T = -.169, p = .039. More generally, it should be noted that VSWM significantly correlated with most
of our measures (see Table 3).
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Table 3

Kendall’s T Correlation Coefficients Between Performance in the Non-Symbolic Number Comparison Task and Performance in the Other
Control Tasks (N =71).

Measure 1 2 3 4 5 6
1. Non-symbolic number comparison (CR) - -.032 .007 -.081 247 -.169*
2. Symbolic digit comparison (IES) - -.148 .289* -.202* .101
3. Arithmetic (Raw Score) - -.198* A77* -.025
4. General processing speed (Correct RT) - -.207* .064
5. Visuo-spatial working memory (d’) - .001

6. Inhibitory control (A IES) -
Note. CR = Correct Response; IES = Inverse Efficiency Score; RT = Response Times. An asterisk depicts statistical significance at the

bilateral threshold of .05. Except for measures involving IES (i.e., (2) and (6)), a greater value is associated with better performance.

Discussion

In this study, we designed a new non-symbolic stimulus generation method—NASCO—extending the recom-
mendations from Dehaene et al. (2005) by taking into consideration visual parameters that were not included in
the original document, that is, the extent of the CH and the MO. Using a non-symbolic stimulus set specifically
designed with NASCO app in a numerical magnitude judgment task with young adults, we replicated the
well-known numerical ratio effect on performance: closer numerical magnitudes were more difficult to compare
than more distant ones. The replication of the numerical ratio effect across the trials—even while controlling for
additional visual dimensions—suggests that participants indeed performed numerical judgments during the task
and therefore supports the validity of our stimulus generation algorithm.

Moreover, manipulation of the IS and the TA influenced the numerical magnitude judgments. Participant per-
formed very well when TA varied together with numerical magnitude (i.e., when IS was kept constant across
the patches). Conversely, performances dropped when IS varied with number (i.e., when this time TA was kept
constant). These observations are line with previous reports that TA is a visual dimension that significantly
affects numerical magnitude judgments (e.g., Gebuis & Reynvoet, 2012). They also support Gebuis et al.’s
(2016) criticism that averaging data from the half of items where one dimension is manipulated with data from
the other half where the other dimension is controlled is insufficient to set aside the alternative hypothesis that
numerical judgments are based on one of the manipulated visual cue (see also Leibovich et al., 2016). The
fact that TA was the stronger dimension (in comparison to IS) in our design is not surprising since TA was
confounded with the luminance of the array, which is a very salient feature in visual perception (Krauskopf,
1980), whereas IS was previously found not to influence performance above the subliminal threshold (Gilmore
et al., 2016). In addition to that, our stimulus set ranged from 19 to 48 dots, and some authors reported that
density (and therefore MO) has a stronger influence when the number of elements is much larger (hundreds
of dots, see for instance Dakin et al., 2011). One critical remaining question is whether the influence of TA/IS
is automatic and implicit, or rather strategic and task-driven. A recent study emphasized that participants
deliberately and strategically use the non-numerical visual dimensions to make their numerical judgment, which
is even more worrying for the reliability of the non-symbolic comparison task (Roquet & Lemaire, 2019). This
issue should be further investigated in future studies.
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More critically for the purpose of the current study, which proposes to consider and control also the CH and
the MO of dot sets, the manipulation of the latter two visual attributes was not negligible. It substantially influ-
enced numerical comparison performances. Participants consistently had more difficulties in judging numerical
magnitude when CH was kept constant (i.e., when MO varied). Alternatively, one could say that participants
were better to compare numerical magnitudes when CH was confounded with number (i.e., when MO was kept
constant). In other words, participants responded as a function of the extent of the array, which follows the
natural law “more items take more place.” This result is in line with previous reports that CH might be an even
more influential cue than IS or TA (Gilmore et al., 2016). In our dataset, CH was indeed more impactful than
TA, which strengthens the necessity to control for this aspect when designing dot arrays (see also Clayton,
Gilmore, & Inglis, 2015).

As we clearly observed, the manipulation of two additional visual dimensions to the classic method of Dehaene
et al. (2005) drastically affected performances. This has important implications for the literature as many
studies used the original method or Panamath, and they thus did not take into account these influential visual
dimensions, which were randomly varied throughout the experiment. If we take the hypothetical situation of
designing a study where only TA and IS are manipulated, then the impact of CH and MO on behavior would
be missed. Our findings thus corroborate the concern from some authors (Gebuis et al., 2016; Leibovich et
al.,, 2016) that we might need to critically reconsider many previously published results. This concern is even
more pressing regarding the results of the current study in terms of correlation analyses. With the present
dataset, we were not able to replicate any correlation between our measure of approximate numerical ability
(that comprises TA, IS, CH, and MO) and math ability or symbolic magnitude judgments, which should be
moderately related according to a meta-analysis (Schneider et al., 2016). However, we found a significant
correlation between our measure of non-symbolic numerical ability and domain-general abilities such as VSWM
and inhibitory control. This finding is consistent with the criticism that these processes are implied during
non-symbolic numerical comparison tasks (Inglis & Gilmore, 2014), and supports Norris et al.’s (2018) concern
that the measurement of numerical ability in the literature might be too biased to be informative. Nevertheless,
the systematic correlation analysis between all these factors was not our primary objective, therefore future
studies will need to investigate this issue more in details.

As a final reminder note, NASCO method does not aim at isolating the numerical dimension from every other
visual dimension, or at suppressing the influence of the latter. NASCO method and app were designed for
researchers or practitioners who want an easy and straightforward way to generate dot arrays. We suggest
them to use NASCO app to create stimulus set that follows NASCO method. Researchers in need of sophisti-
cated control method could still use a more elaborate method such as for instance the one from DeWind et
al. (2015). Fortunately, NASCO app was also designed to allow such researchers to easily generate stimulus
set according to their needs. We hope that this new design method and the generation algorithm will provide
future guidance in designing cleaner stimulus sets, and subsequently will improve the quality and the validity of
non-symbolic numerical magnitude judgment tasks.

Notes

i) Most published articles following the methodological document from Dehaene et al. (2005) used dot arrays, although
similar construction rules were described for other basic geometrical forms, such as squares. For the sake of brevity, we
focus on constructing dot arrays because we used dot arrays in the current study.
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ii) Mean Occupancy is actually the inverse of Density (i.e., 1/D), the number of items within a given space. MO described as
the following relation MO = CH/N should be understood as the mean space that each dot sustains within and around its
physical size (see Allik & Tuulmets, 1991).

ii) Note that we consider here the default parameters, although the user is able to modify some properties (such as the
difficulty level, the dot color, and the presentation time). Nevertheless, the user cannot precisely specify the extent of the
Convex Hull or the Mean Occupancy.

iv) It should be noted that NASCO app generates random positions during each iteration. In practice, it is thus not reliable to
generate a given value of the size of CH with the precision of one pixel; an approximate value is rather provided (it is
theoretically possible to get a CH with the wanted size but it may require a lot of iterations). By default, we tolerate a
maximal error of only 1% for determining the size of CH (e.g., a desired CH of 100,000px will actually range from 99,000 px
to 101,000 px). The users can modify the value of the maximal error at their best convenience.
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