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Abstract

An important paradigm in modeling the complexity of mathematical tasks relies on computational complexity theory, in which complexity is
measured through the resources (time, space) taken by a Turing machine to carry out the task. These complexity measures, however, are
asymptotic and as such potentially a problematic fit when descriptively modeling mathematical tasks that involve small inputs. In this paper,
we argue that empirical data on human arithmetical cognition implies that a more fine-grained complexity measure is needed to accurately
study mental arithmetic tasks. We propose a computational model of mental integer addition that is sensitive to the relevant aspects of
human arithmetical ability. We show that this model necessitates a two-part complexity measure, since the addition tasks consists of two
qualitatively different stages: retrieval of addition facts and the (de)composition of multidigit numbers. Finally, we argue that the two-part
complexity measure can be developed into a single response-time measure with the help of empirical study of the two stages.
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Not all integer addition tasks are equally complex. Solving 3 + 4 appears to be a less complex task than solving
16 + 24, which in turn seems to be less complex than solving 635 + 242. As a first observation, it is easy to
see that as the numbers become larger, arithmetical tasks become more complex. However, while this intuitive
idea may work as a rough guideline for assessing the complexity of algorithms that solve addition tasks, a more
exact measure of complexity is clearly needed. One approach for introducing such measures is based on the
notion of computational complexity taken in theoretical computer science, in which one estimates the resources
needed by a Turing machine to solve the problem via a given method. The basis of using this computational
approach in cognitive science is the idea that a cognitive process can be modeled as a computation of a specif-
ic output for a particular input (e.g., Anderson, 1990; Marr, 1982; for discussion, see Szymanik & Verbrugge,
2018; van Rooij, 2008). Under this view, the complexity of cognitive processes can then be characterized in
terms of the computational complexity of the functions mapping the output/input-functions (see e.g., Frixione,
2001; for critical discussion, see Fabry & Pantsar, 2019; Pantsar, 2019). In this way, the study of computational
resources in complexity theory can be used in determining the complexity of cognitive processes.
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In the case of the addition of integers, these computational resources are not limited to a finite domain.
Therefore, the complexity measures that are used are asymptotic: they describe the limiting behavior of
functions as the arguments approach infinity (or a particular value). The standard is to use the “Big O” notation,
which measures the complexity of a problem-solving method as a function of the size of the input. The idea
behind the notation is that as the arguments get closer to infinity (or the particular value), the complexity of
algorithms is mostly determined by one term in the function. For example, the multiplication of integers with
the standard schoolbook long multiplication method takes n? + k resources for two n-digit numbers, where k
is some constant factor. But as the numbers become larger, the influence of the constant on the resources
needed to compute the function becomes smaller. Thus, in the Big O notation, the constant is dropped and the
complexity of multiplying integers using the schoolbook method is said to be O(n?). Similarly, the complexity of
addition using the schoolbook method (including carries) is O(n).

The most common measures for the computational complexity of problem-solving methods are time and space.
The latter is usually determined in terms of the memory resources needed in the computation. The former
is characterized in terms of the number of elementary computational operations needed, on the assumption
that the operations take a constant time to be carried out (of course this doesn’t hold in practice, especially
if one considers different types of operations—as one has to for mental addition). Hence the computational
resources are often simply characterized by the number of computational steps required in the algorithm (see,
e.g., Aaronson, 2012). Understood in this way, integer multiplication via the schoolbook method takes roughly
n? steps, and integer addition via the schoolbook method takes roughly n computational steps.

For cognitive scientists and philosophers, the computational complexity measures have given a way to limit the
class of possible functions that can model human cognitive capacities. Based on Cobham’s thesis (Cobham,
1964), in theoretical computer science it is widely accepted that the class of tractable (or efficiently solvable)
functions consists of those functions that can be solved by a deterministic Turing machine in polynomial time
(forming the complexity class P). This thesis has been applied to cognitive capacities as the tractable cognition
thesis, stating that only functions in P can plausibly model human cognition computationally (Frixione, 2001;
van Rooij, 2008). This use of computational complexity measures to characterize the cognitive tasks would
seem to be extendable to a general analysis of the complexity of the tasks. In case of mental arithmetical
operations, for example, it initially seems plausible to make the case that multiplication via the schoolbook
method is of complexity O(n?) and addition via the schoolbook method of complexity O(n).

However, the fact that the Big O notation denotes asymptotic behavior makes those complexity measures
imprecise characterizations of the methods we use when solving arithmetical problems without using external
tools. While the Big O notation is still applicable to the algorithms used in mental arithmetic, it lacks the detail
necessary to describe all the differences between addition problems that are solved in this way, primarily
because mental arithmetic is limited to small inputs.’ These details can be important, for example for empirical
research on the choice of mental calculation strategies (e.g., Fagginger Auer, Hickendorff, & van Putten, 2018;
Verschaffel, Luwel, Torbeyns, & Van Dooren, 2009). Such research assumes that some strategies are more
optimal than others, but so far there is no precise characterization of this intuitive idea. A detailed complexity
measure for different mental strategies would be valuable in this regard.

The problem is, the Big O notation is not sensitive enough for such research. When we say that schoolbook
addition is of the complexity O(n), we mean that for two n-digit numbers it takes n + k computational steps,

Journal of Numerical Cognition
2020, Vol. 6(1), 148-163

GOLD
https://doi.org/10.5964/jnc.v6i1.218 B PsychOpen


https://www.psychopen.eu/

Complexity of Mental Integer Addition 150

k being some constant factor. In studying asymptotic computational complexity, it is understandable that the
constant factor is ignored, since the effect of k on the total computational load becomes smaller as n becomes
larger. For large enough n, the effect of k becomes negligible. It should be noted that the Big O notation
does allow for a more precise treatment, as one can specify the minimum, maximum and average complexity
of, for example, addition according to the schoolbook method. The minimum complexity in this case occurs
when there are zero carries, and calculating the addition then requires n computational steps. The maximum
complexity occurs when there are n carries, and is therefore 2n—1 computational steps. We can also determine
that the average complexity is 3n/2. But even with these additional measures, there is relatively little sensitivity
to the differences in complexity that occur between small inputs.

Because human mental arithmetic is only used for very small inputs, the constant k is non-trivial, and differ-
ences between cases are more pronounced. For example, the addition 23 + 42 can be computed without
carrying, thus requiring two addition steps, 3 + 2 and 2 + 4. The addition 28 + 37, although resulting in the
same value, includes an extra addition step. After adding 8 + 7, the 1 must be carried to the next addition 1 +
(2 + 3), thus resulting in three addition steps. In computational complexity analysis, the carrying is included in
the constant k. But as our examples show, depending on the numbers that are being added, the constant can
represent a 50% increase in the number of computational steps. Such an increase can hardly be ignored in
an empirically accurate description of the complexity of the mental arithmetic task. If our aim is to characterize
the complexity of mentally solving arithmetical problems accurately, then our complexity measure needs to be
sensitive to such differences.

For a completely (descriptively) accurate complexity measure of mental arithmetic one needs to account for a
number of cognitive effects that are central to (theoretical) debates in the empirical literature. The main body
of this paper is structured around this list of effects, which we try to accommodate into our new complexity
measure. First, there is a cognitive difference between additions with zero and additions that do not involve
zeroes (Brysbaert, Fias, & Noél, 1998 found response times are roughly 10% higher to, for example, 21
+ 4 compared to 20 + 4). Second, there is a carry effect, which means that additions that involve a carry
take more time (Ashcraft & Stazyk, 1981; Nuerk, Moeller, & Willmes, 2015; Brysbaert et al., 1998 recorded
a 50% increase in response times compared to additions with no carry or zeroes). Furthermore, there is a
problem-size effect, where response times increase for single-number additions as the outcome of the addition
increases (e.g., 3 + 4 took on average 10% longer to compute than 1 + 2 in Barrouillet & Thevenot, 2013).
Finally, there are more general influences on the complexity of mental addition such as an individual’'s math
abilities and working memory capacity (Imbo, Vandierendonck, & De Rammelaere, 2007 saw response times
almost double when participants had to concurrently perform a second task that engaged the central executive,
as per the model of working memory in Baddeley & Hitch, 1974). All of these effects are left unspecified in
the computational complexity measures, yet they can have highly significant effects on the cognitive complexity
of the task. We discuss the effects specific to addition in section 2 of the paper, including how our proposed
simple measure manages to capture all but the problem-size effect. We suggest how a more involved measure
could be sensitive even to this latter effect, but point to difficulties in developing it that makes us prefer to
present a simpler measure in this paper. Finally, we discuss the general influences and how their effect is
reflected in our model in section 3, along with general properties and limitations of our proposed complexity
measure.
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In what follows, then, we introduce a more fine-grained complexity measure of integer addition as performed by
human subjects. This is further supported by a computational model from which the complexity of an arbitrary
problem can be inferred. This allows us to present a complexity measure which is sensitive to more than just
the input size of an addition task. As a result, it is more precise than the asymptotic approach, but this comes at
a cost. The Big O notation gives an estimate of the complexity (possibly refined into a maximum, minimum and
average complexity) irrespective of the content of the input. The complexity measure enabled by our model, on
the other hand, uses the content of the input to determine the complexity of solving that specific problem using
the methods of mental arithmetic. This makes the measure more descriptively accurate, primarily because it
uses more information about the problems to be solved.

A More Sensitive Complexity Measure

In order to give a more detailed complexity measure for addition problems we need a different setup for the
units used in the complexity measure. As mentioned above, in standard complexity theory this is often simply
the number of computational steps (Aaronson, 2012). While this works well for Turing machines, it can be
less suitable for modeling human problem-solving processes. The upshot of this approach is that the potential
differences between different multiplication and addition tasks are ignored, with the focus being on the size of
the input. Essentially, every addition task is equally complex as long as the sizes of the input are the same.
However, the tasks performed in the course of human mental calculation can differ significantly, which is why a
feasible complexity measure sensitive to such differences should be designed. The sizes of input may be the
same, yet the cognitive tasks involved of different complexity, as we will show in the case of integer addition. In
order to be able to introduce such a more fine-grained complexity measure, we need to establish groundwork
on a computational model of integer addition, as actually performed by human subjects.

There is important evidence that mathematically competent human problem solvers, when confronted with an
integer addition problem, always proceed in roughly the same way (see Nuerk et al., 2015 for an extensive
review of the cognitive science literature). First, they decompose the numerals that are perceived. For example,
24 is decomposed into 2 and 4. Then, they perform separate additions for the individual numerals. 24 +
32 is solved by performing 2 + 3 and 4 + 2 after the decomposition step. Finally, the separate results are
recomposed in order to arrive at the correct answer. If necessary, carries are also computed.’

Cognitive scientists are fairly certain that numerals are decomposed in this way by arithmetically competent
people, and that this happens automatically (Garcia-Orza & Damas, 2011; Moeller, Huber, Nuerk, & Wilmes,
2011; Nuerk et al., 2015). Given that the numerals are processed in this decomposed form, addition operations
are always performed with single digits. This fits with suggestions about the way in which addition facts are
stored (Butterworth, Zorzi, Girelli, & Jonckheere, 2001), as well as experiments that suggest that other mental
arithmetic operations such as multiplication are executed with single digits (Domahs, Delazer, & Nuerk, 2006;
Domabhs et al., 2007; Verguts & De Moor, 2005).

The empirical evidence thus suggests that there are two steps relevant for the complexity of mental addition
problems: the composition steps, in which the given numerals are decomposed and the solution is recom-
posed, as well as addition steps, in which addition facts are retrieved to perform the calculations. That being
said, it is important to note that these are the relevant steps for arithmetically educated adults (and older
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children with arithmetical knowledge and skills). Young children, who in the beginning often resort to finger
counting strategies (e.g., Canobi, Reeve, & Pattison, 2003), would require a different complexity measure (if
only because there is little or no retrieval of addition facts from memory). In such a case, a “+ 1” step would
be the basic measure of complexity, rather than the retrieval of a single-digit addition fact. It is also plausible
that different numeral systems (e.g., different bases) can cause relevant differences in the mental arithmetic
processes. Finally, there is some disagreement over whether the single-digit addition operations are indeed
based on retrieval strategies. An alternative is that these problems are solved procedurally, but quickly enough
that we are not consciously aware of the fact that we actively solve the problem, rather than remember the
solution (Fayol & Thevenot, 2012; Barrouillet & Thevenot, 2013). Should this be the case, then one can fill
in these sub-procedures in place of the retrieval steps in our model. In the rest of the paper we will refer to
the retrieval account, as it is the most common in the literature, but our model can easily be changed if a
procedural account turns out to be correct.

So, then, for adult subjects familiar with arithmetic in a decimal number system there appears to be a constant
two-stage procedure for completing mental addition tasks. We therefore propose, as the foundation of our more
sensitive complexity measure, a measure specified by a pair: (¢, a) with ¢ the number of composition steps and
a the number of addition operations based on retrieval from memory (or sub-procedures that solve single-digit
addition problems). The first part of the measure, ¢, can be computed in terms of the length of the input. We
also make the simplifying assumption that each decomposition step is equally complex. However, the second
part of the measure, a, depends on the specific numbers that one has to work with. For simplicity, we assume
that each single-digit addition operation is equally complex. We will see that even under that assumption one
cannot, in general, compute the number of addition operations purely in terms of the length of the input.

We think that this model is best motivated and explained on the basis of the known differences in complexity
from the cognitive science literature. However, we will also discuss several objections one might have to the
model in section 3. First, we turn to the peculiar difference in complexity (reaction times and error rates)
between 60 + 8 and 61 + 8.

Additions That Involve 0

As Brysbaert et al. (1998) found, it is simpler for humans to compute 60 + 8 than to compute 61 + 8, even
though a standard complexity measure could not establish any difference. The length of the input is the same,
and the computational problem (natural number addition) is the same, so therefore standard complexity theory
doesn’t distinguish between the two. Yet there is a clear difference, as there is no need to retrieve an addition
fact in this case. The Arabic numeral system works in such a way that for 0 + 8 one can simply replace the 0
by 8. That is in contrast to 1 + 8, where one does need to retrieve an addition fact, namely 1 + 8 = 9. A similar
effect has been found with number comparisons. Decisions which of, for example, 050 and 003 is larger are
made faster and with fewer errors than between, for example, 050 and 030 (Garcia-Orza, Estudillo, Calleja, &
Rodriguez, 2017; Kallai & Tzelgov, 2012).

For this reason, 60 + 8 has, according to our measure, complexity (2, 0) with 2 composition steps—one to
decompose 60 and one to recompose 68—and no addition steps. 61 + 8 has complexity (2, 1) because one
needs to retrieve 1 + 8. It is, for that reason, more complex and will take longer.
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Yet zeroes do add some complexity to a problem. Compare, for example, the addition tasks 200 + 300 and
2 + 3. Intuitively, the former is a more complex addition problem than the latter. Standard complexity theory
agrees with that intuition, since the input for the first is much longer than that for the second. This is also
reflected in our complexity measure, though only in the number of composition steps. 2 + 3 does not need to be
decomposed and therefore has complexity (0, 1). 200 + 300 does need to be decomposed and recomposed. It
requires 4 decomposition steps (if we count them as cutting up the numeral, for example, first we take the last
0 from 200 and then the second zero to arrive at 2, 0, 0). It also needs two steps to recompose the numeral.
That gives a complexity of (6, 1). So, we predict that 200 + 300 is more complex than 2 + 3, though that the
difference in response times is less than the difference between 2 + 3 and 254 + 289. We are not yet aware of
studies that have tested this exact difference, but expect there to be one (which is overlooked by the standard
complexity theory measure).

In this way we can, we think correctly, model many apparent differences between addition problems. 200 + 300
is (we predict) more complex than 2 + 3 but less complex than 210 + 310, the difference being that the last
problem requires us to retrieve two addition facts, compared with just one for the first two. And, of course, this
is (so we predict) again simpler than 214 + 312 which requires three addition steps, making its complexity (6,
3).

Differences in Length of Input

Our complexity measure is more similar to the standard asymptotic complexity measure when no zeroes or
carries are involved. 61 + 18, for example, is more complex than 61 + 8. The main reason for this is that one
needs to add more numbers together in the case of 61 + 18. 61 + 18 requires two addition steps (6 + 1 and 1
+ 8), whereas 61 + 8 only requires one. Furthermore, because 61 + 18 is longer it requires more composition
steps. Our model claims that 61 + 18 has complexity (3, 2) and 61 + 8 has complexity (2, 1).

Our account does not differ significantly from standard complexity theory in this sense. The increase in com-
plexity with length is also linear. As long as there are no zeroes, one gets an additional addition step whenever
the length of both addends has increased. However, addition steps increase only in that case: there are no
extra addition steps when only the length of one of the two addends increases. For example, 6431232351 + 8
has equally many addition steps as 1 + 8.

The only thing that truly increases with length of input in the way codified by standard complexity theory is the
number of composition steps. The longer the input numerals, the more effort it takes to separate them out into
component parts. However, for both addition steps and composition steps there is an important special case:
carrying.

Carrying

Whenever the addition of two single digits gives a result above 9, one needs to carry part of the result to the
left. This makes mental addition more complex, as we also know from empirical studies (Ashcraft & Stazyk,
1981; Nuerk et al., 2015). While this is implicitly captured by standard complexity theory, there is no way to
explicitly represent the added complexity of carrying in that framework. Our complexity measure, however,
registers it explicitly in terms of more addition steps and/or more composition steps.
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This touches on an ongoing debate about the reason carries are more complex. By formalizing it as an extra
addition step our measure suggests that this is a categorical difference: 18 + 13 is more complex than 18
+ 11 not just because the numbers involved are larger (known as the problem-size effect) but because the
carry operation itself requires more work. There are, however, studies that found a more gradual increase in
complexity (based on response times) dependent on the sum of the single digits being added (e.g., 3 + 4 is
more complex than 1 + 4 but less complex than 3 + 6). This could mean that the carry effect is rather an easily
observable case of this gradual increase, since the outcomes of single-digit problems with carry are always
higher than those without carry—or that it is a combination of this gradual effect and the more abrupt need
for additional work in the case of carries (Artemenko, Soltanlou, Ehlis, Nuerk, & Dresler, 2018; Klein et al.,
2010). The model presented here, however, does not include this gradual increase, mainly in order to keep the
complexity measure as simple as possible (and the debate has not yet ruled out the categorical view of the
carry effect). So, we leave aside the gradual increase for now and will return to it in section 3, where we discuss
limitations of our model.

Consider first the difference between 65 + 24 and 65 + 26. The latter is more complex, because one needs to
carry the result from 5 + 6 to the addition of 6 + 2. What we suspect happens is that the carry is calculated
after the two separate additions have already been computed. That is, we compute 6 + 2 and 5 + 6 first, and
then perform the carry to 8 + 1. The alternative hypothesis is that we compute the 5 + 6 first, notice the need to
carry part of the result, and then compute 6 + 2 + 1. While that is how we often work on paper, mental addition
may not follow this second scenario. Eye-tracking studies suggest that the carry is computed after the initial two
additions (Moeller et al., 2011).

The carry is, then, a separate addition step. Therefore, 65 + 24 has complexity of (3, 2) whereas 65 + 26 has a
complexity of (3, 3). Even if the second scenario is correct, where we compute 6 + 2 + 1 instead of 6 + 2 and 8
+ 1, we still think the extra addition step is warranted. In that case, too, we need to retrieve two addition facts,
assuming that we only store addition facts involving two addends (as suggested by Butterworth et al., 2001).

This is the scenario where the carry is not in the leftmost digits. If, instead, one compares 65 + 24 with 65 +
44, there is another complexity difference. There is no need for an extra addition step. Instead, the resulting
numeral is longer, requiring an additional composition step. 65 + 24 has complexity (3, 2) and 65 + 44 has
complexity (4, 2). Of course, those effects could combine. 65 + 36 has complexity (4, 3) because it requires
both the extra addition 6 + 3 + 1 and an extra composition step.

A Computational Toy Model of Integer Addition as Performed by Human Subjects

We believe that a computational toy model of the addition of two i-digit integers that takes into account the
above aspects of integer addition as performed by human subjects can help clarify our proposed measure. For
the sake of simplicity we present here only the case when the integers consist of equally many digits.

Let n be an i-digit number with the following composition of digits n = n; ... ny,n;.
Let m be an i-digit number with the following composition of digits m = m; ... m,m;.

In the beginning, carry memory is empty. The model computes the sum n + m = s = s;s; ... $58; in the following
way with the input (n, m):
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1 Decompose ninto n,, ..., n, n,

2 Decompose m into m,, ..., m,,m,

3 Fork=1toi

4 Take the pair of digits (n,, m,):

5 If n, =0, then assign s, = m,

6 If m, =0, then assign s, = n,

7 Otherwise:

8 Retrieve addition fact n, + m,

9 If n, + m, > 9 then assign rightmost digit to s,

10 Otherwise s, = n, + m,

11 If carry memory is 1:

12 Retrieve addition fact s, + 1

13 If s, + 1> 9 then assign rightmost digit to s,

14 Otherwise s, = n, + m,

15 If n,+ m,>09, or carry memory is 1 and n, + m, + 1> 9, then store 1 to carry
memory.

16 Otherwise, set carry memory to 0

17 End for-loop

18 If carry memory is 1, assign s; = 1

19 Otherwise, assign s; = 0

20 Compose and output the integer s = ss; ... 5,8,

Roughly put, the model takes the input and runs the lines 4 to 16 until it gets to the final digits of n and
m. At this point it checks to see if there is a final carry before composing the output (line 20). We can see
that this computational model is sensitive to the difference between adding zero and adding two non-zero
integers. It is also sensitive to the extra addition steps needed when carrying. Furthermore, it is sensitive
to the extra composition step if the sum has more digits than the addend numbers. Due to these features,
the model captures aspects of mental integer addition that are not included in the asymptotic computational
complexity measures. With our model, one can extract the complexity of a specific addition problem (according
to our measure) by counting the number of (de)composition steps and addition fact retrievals one encounters
while solving the problem in this computational model. In other words, this offers a model that can be used
to automatically produce the complexity of a given addition problem. Consequently, one can also use this to
generate predictions about which additions are more complex and which are simpler, that can then be tested
empirically.

Basic Properties of the Complexity Measure

As we mentioned in the introduction we do not think that our complexity measure conflicts with the Big O
notation. Rather, it gives a more detailed picture for situations in which only small inputs occur. While this
does not undermine the validity of standard asymptotic complexity measures in any way, it does show some
differences even in terms of the best-case, worst-case and average-case complexity. Recall that these three
are, for solving addition problems with the schoolbook method, n, 2n-1 and 3n/2, respectively.

In the case of mental arithmetic, the best-case scenario involves zeroes. If the inputs are allowed to be of
unequal length, then this occurs when one number consists of 1 digit and the other of n digits where the last
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digit is a zero. The complexity of mental addition in this case is ((n—1)*2, 0). With inputs of equal length, the
best-case is, instead, when the left-most digits do not lead to a carry and all the other digits are zeroes (e.g.,
200 + 300). In such a scenario mentally adding the numbers has complexity ((n-1)*3, 1). This is, when one
only looks at the number of addition steps, significantly lower than the best-case scenario as described by the
asymptotic measure. In the situation without zeroes and with equally-sized inputs, the best-case complexity
on our measure is ((n—-1)*3, n)—yielding the same number of addition steps as predicted by the asymptotic
complexity measure.

The worst-case scenario is basically the same on either complexity measure. When there are n carries, the
complexity of a problem when solving it using mental arithmetic is 2n—1 according to the standard asymptotic
measure and ((n—1)*3+1, 2n-1) according to our measure. But with the average complexity there is again a dif-
ference between the two measures. The average is lower in our complexity measure because any computation
involving a zero is easier to solve using mental arithmetic than the asymptotic measure assumes.

Finally, note that both our complexity measure and the standard asymptotic complexity measure are sensitive
to the base of the numeral system. By changing the base one changes the length of the inputs, thereby also
changing the number of addition steps needed to solve a specific problem. Specifically, if one uses a higher
base then there will be fewer addition and composition steps, on balance. On the other hand, it does become
necessary to remember more arithmetical facts (which isn’t captured by a complexity measure). For example,
with base 16 it is necessary to remember that 10 + 2 = 12 (written here in base 10). In other words, on either
measure the complexity of problems decreases when the base is increased at the cost of needing to remember
more addition facts, though this doesn’t affect the general complexity of the method.

Possible Issues With the Model

While we think that our complexity measure captures the more fine-grained distinctions in complexity of addi-
tion tasks much better than standard complexity theory, it has several features that require further research. To
begin with, the complexity measure is given in terms of a pair of numbers, rather than a single number. This
can make it seem impossible to compare two complexity measures when both values are different. Is (6, 1)
more complex than (3, 2)? The complexity measure itself doesn’t seem to give a clear answer.

However, it is certainly possible to find an answer. The empirical results we have referred to understand
complexity primarily in terms of reaction times. A mental addition problem is more complex if the reaction time
of participants is longer. If we learn, from more experiments, how long a single composition step takes (on
average, or for a particular person) and how long an addition step takes, then every pair can be evaluated to
a reaction time. Those reaction times can be compared without any problems. So, even though the complexity
measures cannot easily be compared as pairs, with the help of empirical data they can be converted to a
format in which they can be compared generally.

In fact, we think this is a highly useful feature of the model rather than a problem. One thing to keep in
mind is that the composition steps we need to take are heavily influenced by language (Nuerk et al. 2015;
Nuerk, Moeller, Klein, Willmes, & Fischer et al., 2011). If we take into account spoken numerals as well, then
languages where those are inverted (such as German, where twenty-four is vierundzwanzig, “four-and-twenty”)
complicate the composition step. Reaction times are longer for languages with inversion and error rates are
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higher (Barrouillet, Camos, Perruchet, & Seron, 2004; Camos, 2008; Gdébel, Moeller, Pixner, Kauffmann, &
Nuerk, 2014; Power & Dal Martello, 1990, 1997). On the other hand, languages such as Korean where place
values are explicitly mentioned in all cases (e.g., 222 is spoken as two hundred two ten two) also lead to better
arithmetic performance, presumably by simplifying the composition step (Fuson & Kwon, 1992). By separating
the composition and addition steps we can account for such cultural differences in complexity more easily,
especially since they seem to be more pronounced for composition steps than for addition steps.

Another upside of this feature of our model is that it allows an implicit role for the more general influences
on the complexity of mental addition mentioned in the introduction: an individual's mathematics skills and
working memory capacity. As shown by Hitch (1978), the effect of working memory on mental arithmetic is
not a simple phenomenon. Working storage decay in cognitive tasks is in general difficult to model and our
model of mental integer addition cannot capture the phenomenon in its full complexity. For example, Hitch
(1978, pp. 320-321) presents data that carrying errors do not occur with the same probability in different places
(ones, tens, etc.) of adding multi-digit numbers. However, by studying solution times our model can still capture
important effects of domain-general factors for integer addition tasks. For a calculation of the response times of
a specific individual, these factors will be important influences on the amount of time any one step takes. For
example, lower working memory capacity increases the response times on mental addition, especially in the
case where carries are present (Imbo et al., 2007). Better math skills can lower response times by reducing the
time needed to retrieve addition facts. So, the domain-general features that influence the complexity of mental
addition are eventually reflected in the computation of response times of an individual in relation to the number
of composition and retrieval steps.

Still, we cannot capture all of the differences between addition problems with our complexity measure. For one
thing, there is a difference between 48 + 25 and 45 + 28 in terms of strategy execution (Guillaume, Nys, &
Content, 2012). For the first, 4 > 2 and 8 > 5, but for the second 4 > 2 while 5 < 8. The incongruence in
the second addition problem has an effect on the order in which participants add the different digits (known
as the unit-decade compatibility effect in tasks where participants have to choose the larger of two multi-digit
numbers). Since it doesn’t seem to affect reaction times in mental addition (Guillaume et al., 2012), we haven’t
included it.

Perhaps more importantly, there is a suggestion that addition facts are always stored in the format “max
+ min = ... that is, as 6 + 2 = 8 and never as 2 + 6 = 8 (Butterworth et al.,, 2001). If so, then 6 + 2
would be less complex than 2 + 6, in the sense that 6 + 2 takes less time to retrieve. These kinds of subtle
differences between different addition steps, as well as any possible differences between composition steps,
are not currently included in our complexity measure. One could, presumably, build more details into the
composition and addition parts of the complexity measure. However, since these effects seem to be relatively
small, compared to the difference made by having to carry or being able to make use of a zero, we have not
done so.

Furthermore, as already mentioned in section 2.3, our model does not account for the gradual increase in
response times that is seen with single-digit additions as the outcome increases. We think that a more complex
model could account for this problem-size effect, by more explicitly producing expectations for response times
that are influenced by the specific digits involved. However, it will be harder to specify this in the kind of
computational model we gave in section 2.4. Yet, if one wants a truly accurate model of how difficult it will be
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to solve a problem by mental addition, the gradual effect has to be incorporated, probably as a linear function
from specific single-digit additions to response times. This could supersede our treatment of the carry effect,
although as mentioned earlier, the debate is ongoing whether the extra effort involved in carries can wholly be
explained by the gradual increase of the outcome.

Another aspect not included in our computational model and the complexity measure are heuristic rules such
as 99 + 32 =(100-1)+ 32 =100 + (32 - 1) = 100 + 31 = 131. In practice, many such rules may be used and
they can change the amount of addition (and subtraction) steps, composition steps, additions with zero, and
carries. A fully accurate computational model of integer addition as performed by human subjects would need
to take into account also such rules, which may differ greatly across cultures as well as across individuals.

Finally, our computational model and the relevant complexity measure are not sensitive to some special cases
of addition where the result is familiar due to some reason. 25 + 25 = 50 could potentially be an example of a
case which does not require explicit carrying, especially for people living in cultures where currency is divided
into quarters. Similarly, 64 + 64 = 128 and similar sums of powers of two can be retrievable without calculation
for people working with computers. Perhaps for golfers, 18 + 18 = 36 requires no calculation. The list of such
examples could be continued, and in particular cases, the computational model could be adjusted accordingly.
What we have wanted to do in this paper is providing a more general computational model and a relevant
complexity measure for it. One of the great strengths of the model is that it can be adjusted for further more
fine-grained aspects of mental integer addition.

As such, our model is line with the more pluralist conceptual frameworks that have been proposed for the
cognition of numbers and mental arithmetic. In the “abstract code” model of McCloskey and others (McCloskey,
1992; McCloskey & Macaruso, 1995), mental arithmetic is thought to be possible by first forming abstract
semantic representations of numerals and number symbols, which are then used for calculations. In that model,
the differences between numeral systems can be present in the abstraction process, but the calculations
are carried on the abstract representations. In contrast, in the “triple-code” model of Dehaene and Cohen
(1995), there are thought to be different representations of numerosities (visual symbolic, auditory verbal, and
analog magnitude estimations), which have different roles in numerical cognition tasks. This model has been
further refined by Campbell and colleagues (Campbell, 1994; Campbell & Epp, 2004), who have proposed
the “encoding complex” model to include interactions between the different representations. Campbell (1995)
argues that empirical data on common errors in arithmetic, for example, can be explained by the interaction of
the different subsystems of numerical cognition.

In this paper, we do not want to commit to any particular theory of cognitive architecture when it comes to
number representations. However, it should be noted that compared to standard computational complexity
measures, our complexity measure is a better fit with a pluralist model like that of Campbell and colleagues.
Our measure is sensitive to differences in number symbol systems and it can be adjusted to account for
differences in verbal numeral systems. Visual number fact memory, familiar multi-digit addition facts, and other
similar phenomena can be included in the model by adjusting the number of retrieved addition facts and
(de)composition steps accordingly.
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Conclusion

It is obvious that not all arithmetical problems are equally difficult. Standard complexity theory gives some idea
of how hard individual problems are, though it is fairly coarse-grained. We have presented a computational
model that enables formulating a more fine-grained complexity measure that closely tracks how difficult addition
problems are for human problem solvers. Based on our understanding of the way arithmetically competent
humans tackle addition problems, we split up their complexity into two kinds of steps: composition steps and
addition (retrieval) steps.

Not only is this model more fine-grained, it also shows that the approach of standard complexity theory is not
sufficient to model the complexity of mental addition problems. They can be much simpler than one would
expect, for example, because we don’t need to retrieve any addition facts when zeroes are involved. Our more
fine-grained measure thus shows that standard complexity theory is not helpful if one wants to know which
addition problem is more difficult for a human problem solver."

Finally, while we have only looked at addition, we think that the model can be extended to other types of
arithmetical problems. There are similar effects for multiplication (e.g., Domahs et al., 2006, 2007). Our model
might also be a good start for modeling the complexity of number comparisons, though there are many more
notation-dependent effects for number comparisons than for addition and multiplication (for a review, see Nuerk
et al., 2015). Our model has also ignored the use of external tools such as finger counting or pen and paper,
which might change the relative complexity of problems.

There is much more work to be done before we understand the complexity of problems for human problem
solvers, rather than for a Turing machine. We hope that this complexity measure for addition is a step in the
right direction, if only because it shows that there are some cases where one gets a surprising divergence
from standard complexity theory. Generally, we believe that more sensitive complexity measures can be used
to make empirical theories on mathematical problem solving more accurate. While in many cases undoubtedly
fruitful, the use of asymptotic computational complexity measures can lead us astray by disregarding significant
factors. We have shown that computational models of arithmetical problem solving tasks such as addition
and multiplication, for example, cannot rely only on input sizes. This is a potential problem for models and
explanations in the cognitive sciences, but also for (in particular early) mathematics education, where finding
a suitable complexity level for problems is a key concern. In the case of integer addition, but also generally in
arithmetic, using input size as the exclusive measure of complexity can be misleading for just the kind of small
inputs that school children deal with.

Notes

i) The input sizes can of course be increased by using cognitive tools like pen and paper. Much of the account of integer
addition in this paper is feasible to use also for pen-and-paper calculations, but this is not necessarily generally the case.

ii) It should be noted that although we speak of human problem solvers as a single group, these results are in fact based on
studies almost exclusively on Western test subjects. For future study, the possible cultural differences in mathematical
problem solving is an important topic. Indeed, we will see that the model we propose is sensitive to such cultural differences
(also within Western cultures, e.g., based on language.).

ii) As discussed below, it might be that the retrieval of addition facts is in fact a very quick, subconscious, adding procedure
not unlike finger-counting. If so, then the complexity measures would be more similar: the main measure would be a “+1”
step in each case, but the time it takes to execute the step is much lower for adults. Furthermore, very young children would
probably not engage in composition steps, since all they do is count on from the lowest/leftmost number. Such problem
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solving strategies can then be tackled in the same way as we approach adult arithmetic, though it is out of scope to analyze
each such strategy here.

iv) We thank an anonymous reviewer for making these points.

v) Our model can be processed by a Turing machine, so we are not suggesting that standard complexity theory could not
ultimately include the more fine-grained complexity measure proposed here. As it is now, however, complexity measures for
arithmetical operations do not include such considerations.
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