
Empirical Research

Can You Trust Your Number Sense: Distinct Processing of Numbers and
Quantities in Elementary School Children

Mila Marinova* ab , Bert Reynvoet ab

[a] Brain and Cognition, KU Leuven, Leuven, Belgium. [b] Faculty of Psychology and Educational Sciences, KU Leuven @Kulak, Kortrijk,
Belgium.

Abstract
Theories of number development have traditionally argued that the acquisition and discrimination of symbolic numbers (i.e., number words
and digits) are grounded in and are continuously supported by the Approximate Number System (ANS)—an evolutionarily ancient system
for number. In the current study, we challenge this claim by investigating whether the ANS continues to support the symbolic number
processing throughout development. To this end, we tested 87 first- (Age M = 6.54 years, SD = 0.58), third- (Age M = 8.55 years, SD =
0.60) and fifth-graders (Age M = 10.63 years, SD = 0.67) on four audio-visual comparison tasks (1) Number words–Digits, (2) Tones–Dots,
(3) Number words–Dots, (4) Tones–Digits, while varying the Number Range (Small and Large), and the Numerical Ratio (Easy, Medium,
and Hard). Results showed that larger and faster developmental growth in the performance was observed in the Number Words–Digits
task, while the tasks containing at least one non-symbolic quantity showed smaller and slower developmental change. In addition, the Ratio
effect (i.e., the signature of ANS being addressed) was present in the Tones–Dots, Tones–Digits, and Number Words–Dots tasks, but was
absent in the Number Words–Digits task. These findings suggest that it is unlikely that the ANS continuously underlines the acquisition and
the discrimination of the symbolic numbers. Rather, our results indicate that non-symbolic quantities and symbolic numbers follow
qualitatively distinct developmental paths, and argue that the latter ones are processed in a semantic network which starts to emerge from
an early age.
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Developmental models of numerical cognition have traditionally assumed that the processing and the acquisi-
tion of symbolic numbers (e.g., number words, digits) are deeply rooted in evolutionarily ancient brain systems,
called the Parallel Individuation (PI) system (e.g., Carey, 2009a, 2009b), and the Approximate Number System
(ANS or also called “number sense”; e.g., Dehaene, 2001; Dehaene & Cohen, 1995; Feigenson, Dehaene,
& Spelke, 2004; Piazza, 2010). These two systems process the number for a set of items (i.e., non-symbolic
quantities) in a qualitatively different way. The PI represents the number by keeping track of the individual
elements in a set of objects. The representations of these individual elements are then stored as long-term
memory models, which can be applied to a novel set of objects (e.g., [●●●] = [i, j, k]). Because the PI has
a limited representation capacity for items up to 4-5, it has been assumed that this core system can only
support the learning of small numerals up to 4 or 5 (e.g., Carey, 2009a, 2009b; Carey, Shusterman, Haward,
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& Distefano, 2017; Feigenson et al., 2004; Piazza, 2010). Consequently, its contribution to symbolic number
acquisition diminishes over time when we have to acquire larger symbolic numbers (e.g., vanMarle et al.,
2018). On the other hand, the ANS represents numbers as an imprecise sum of a set of items (e.g., [●●●] ≈ [iii])
in the form of Gaussian distributions, positioned on a left-to-right-oriented mental number line (MNL; Dehaene,
2001; see also Dehaene & Changeux, 1993; Nieder & Dehaene, 2009). Because the ANS has an unlimited
representational capacity, i.e., any number irrespectively of its size can be represented, it has been argued that
the ANS is the core system that supports the acquisition of all symbolic numbers (Dehaene, 2001; Dehaene &
Cohen, 1995; Piazza, 2010; vanMarle et al., 2018; but see Carey & Barner, 2019; Carey et al., 2017; Núñez,
2017). In support of this claim, studies investigating children’s abilities to map between symbolic numbers and
non-symbolic quantities (e.g., are “●●●●” and “four” the same number; Benoit, Lehalle, Molina, Tijus, & Jouen,
2013) showed that children make fewer mistakes when they have to link non-symbolic quantities with symbolic
numbers (e.g., four objects with the number word “four”), than when they have to link two symbolic numbers
(e.g., “4” and “four”), suggesting that non-symbolic quantity representations are children’s preferred mechanism
to learn the symbolic numbers because the former once are readily available from birth (i.e. if “four” = “●●●●“,
and “4” = “●●●●“, only then “four” = “4”; Benoit et al., 2013; Piazza, 2010).

Another common observation interpreted as evidence that ANS continuously supports the processing of
symbolic numbers is that the performance of both children and adults on tasks requiring the processing
of symbolic numbers and non-symbolic quantities exhibits a ratio effect (Barth, Kanwisher, & Spelke, 2003;
Defever, Sasanguie, Gebuis, & Reynvoet, 2011; Halberda & Feigenson, 2008; Sasanguie, De Smedt, Defever,
& Reynvoet, 2012). The ratio effect indicates that the relative distance (n1/n2) between two numbers influences
the behavioural performance. That is, participants’ performance is worse when the relative distance (i.e., the
ratio) of the numbers to be compared is closer to 1, e.g., comparing 6 and 8 (ratio = 1.33) is harder than
comparing 2 and 4 (ratio = 2). The representational characteristics of the ANS typically explain the ratio effect.
Because ANS represents numbers as Gaussian distributions on the Mental Number Line (MNL), the closer
two numbers are on the MNL, the more their distributions overlap and the harder it is to discriminate them
(e.g., Dehaene, 2001; see also Gallistel & Gelman, 1992; Moyer & Landauer, 1967; Verguts & Fias, 2004;
for the logarithmic scaling account of the MNL see Feigenson et al., 2004). Although the ANS represents any
number, this representational precision decreases as the size of the number increases (i.e., larger numbers
are represented less precisely as wider Gaussian distributions), leading to even larger distributional overlap.
Consequently, to maintain a constant level of discrimination performance, while increasing the number size, a
large relative difference (i.e., ratio) between two numbers is required (i.e., ANS adheres to the Weber-Fechner
law; Fechner, 1860).

Studies have shown that ratio-based discrimination is present from very early infancy. For example, Xu and
Spelke (2000) showed that 6-months old infants are already capable of comparing two non-symbolic quantities
of easy ratio: Infants discriminate easily when presented with 16 dots vs 8 dots, but fail to distinguish between
two sets of dots of harder ratio (e.g., 12 dots vs 8 dots; see also Feigenson et al., 2004; Lipton & Spelke,
2004). Throughout development, the representational precision of ANS increases and children become able
to discriminate between numerosities of hard ratios too (e.g., Halberda & Feigenson, 2008). In addition, it has
been repeatedly shown that this increase in the ANS acuity predicts symbolic number knowledge and symbolic
math skills (e.g., Libertus, Feigenson, & Halberda, 2011; Park & Brannon, 2013, 2014; Shusterman, Slusser,
Halberda, & Odic, 2016; Wang, Odic, Halberda, & Feigenson, 2016). Consequently, it has also been suggested
that probably the (non-symbolic) numerical ratio is a crucial factor, enabling the acquisition of all real numbers
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(both natural numbers and fractions; Matthews, Lewis, & Hubbard, 2016; Sidney, Thompson, Matthews, &
Hubbard, 2017).

Taken together, for many years now, these and other similar findings were forging strong the idea that the ANS
and its ratio acuity underline the acquisition of the symbolic numbers (e.g., Dehaene, 2007; Dehaene & Cohen,
1995; Piazza, 2010; Matthews et al., 2016; Von Aster & Shalev, 2007; see also Dehaene & Changeux, 1993).

An increasing amount of developmental and experimental behavioural research, however, recently challenged
the foundational role of the ANS in the processing and acquisition of symbolic numbers. Concretely, it has
been suggested that symbolic numbers and non-symbolic quantities are acquired independently and follow
distinct developmental trajectories (see Bialystok, 1992; Carey, 2009a, 2009b; Leibovich & Ansari, 2016;
Noël & Rousselle, 2011; Núñez, 2017; Reynvoet & Sasanguie, 2016; Wilkey & Ansari, 2020). First, studies
investigating children’s abilities to map between non-symbolic quantities (i.e., sets of dots) and symbolic num-
bers (i.e., digits and number words) showed that symbolic number mappings (i.e., number words–digits) are
acquired earlier than digits–dots mappings (Hurst, Anderson, & Cordes, 2017; Jiménez Lira, Carver, Douglas, &
LeFevre, 2017; Marinova, Reynvoet, & Sasanguie, 2020). These latter findings are difficult to reconcile with the
traditional ANS view, according to which the mappings between symbolic numbers and non-symbolic quantities
develop before the number words–digits mappings, because the non-symbolic quantity representations are
readily available (e.g., Benoit et al., 2013). Instead, these results suggest that symbolic number representations
develop independently of the ANS (e.g., Hurst et al., 2017; Marinova, Reynvoet, et al., 2020).

Second, recent studies (e.g., Goffin & Ansari, 2019; Lyons, Bugden, Zheng, De Jesus, & Ansari, 2018;
Sasanguie, Defever, Maertens, & Reynvoet, 2014; Sasanguie, Göbel, Moll, Smets, & Reynvoet, 2013;
Sasanguie & Reynvoet, 2014) and meta-analyses (Schneider et al., 2017) suggest that indeed a small reliable
link between the ANS acuity and the (later) mathematics achievement is present, but symbolic number skills
are related stronger and contribute more to the (later) mathematics achievement than the non-symbolic quantity
processing skills. Specifically, in their meta-analysis, Schneider et al. (2017) found that the relation between the
symbolic comparison tasks (i.e., measurement of symbolic number processing) and math achievement tests is
significantly higher, r = .302, 95% CI [.243, .361], than the relation between numerosity comparison tasks (i.e.,
a measurement of ANS acuity) and math achievement, r = .241, 95% CI [.198, .284].

Finally, previous research has shown that the ratio effect in symbolic numerical tasks is not always present,
challenging the claim that numerical ratio is an essential factor in symbolic number discrimination. For example,
in a series of audio-visual studies Marinova, Sasanguie, and Reynvoet (2018, 2020) and Sasanguie, De Smedt,
and Reynvoet (2017) report that in adult participants, a ratio effect is always present when the task involves
non-symbolic quantities (i.e., tones – dots, tones – digits, number words – dots), but no ratio effect is observed
in the purely symbolic task (i.e., number words – digits; see also van Hoogmoed & Kroesbergen, 2018).
According to the authors, these results indicate that there are distinct mental representations for symbolic num-
bers and non-symbolic quantities. More specifically, they suggest that, in contrast to non-symbolic quantities,
symbolic numbers are represented precisely in a semantic network, where numbers are represented in terms
of their associative relations (e.g., Krajcsi, Lengyel, & Kojouharova, 2016, 2018; Reynvoet & Sasanguie, 2016;
Vos, Sasanguie, Gevers, & Reynvoet, 2017).

Overall, these studies provide evidence incompatible with the traditional ANS view and suggest that the acquis-
ition and the discrimination of symbolic numbers are not ratio-dependent and that the processing of symbolic
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numbers may follow a separate developmental path from an early age. However, a systematic investigation
of the developmental trajectory of the ratio effect in symbolic number and non-symbolic quantity discrimination
currently lacks in the literature. Moreover, the lack of ratio effect in the symbolic number processing tasks in
adults (e.g., Marinova et al., 2018; Marinova, Sasanguie, et al., 2020; Sasanguie et al., 2017; van Hoogmoed
& Kroesbergen, 2018), does not rule out the possibility that discrimination of symbolic numbers is based on the
ANS at earlier stages in the development. Therefore, developmental data is crucial for providing insights into
the relation between symbolic numbers and non-symbolic quantities.

In the current cross-sectional study, we aim to address this latter question by examining whether the ANS,
indexed by the presence of a ratio effect, is continuously engaged in the processing of symbolic numbers
in children. To this end, we tested 87 first- (Mage = 6.54 years, SD = 0.58), third- (Mage = 8.55 years, SD =
0.60) and fifth-graders (Mage = 10.63 years, SD = 0.67) on four audio-visual comparison tasks—(1) Number
words–Digits, (2) Tones–Dots, (3) Number words–Dots, and (4) Tones–Digits. The Ratio (Easy, Medium,
Hard), and the Number Range (Small (4-9) and Large (13-28)) of the number pairs was varied. We used
an audio-visual paradigm instead of purely visual presentation because of the following advantages. First,
participants can not base their judgements on the perceptual similarities between the stimuli (e.g., Barth et al.,
2003; Marinova et al., 2018; Marinova, Sasanguie, et al., 2020; Sasanguie & Reynvoet, 2014; Sasanguie et al.,
2017). Second, due to the inclusion of the large numbers, it is possible that participants can decompose the
numbers and base their decisions on the decades or the units only (e.g., Nuerk & Willmes, 2005). However,
as we have previously shown (Marinova, Sasanguie, et al., 2020), decomposition is unlikely to occur when
using audio-visual tasks in languages as Dutch, where an inversion of the double–digit numbers exists (i.e.,
“five and twenty” or “vijf-en-twintig” in Dutch, instead of “twenty-five”). That is, because the position of the units
and the decades differs between two consecutive stimuli (e.g., spoken number word “vijf-en-twintig” vs visually
presented digit “21”), decomposition strategy would be inefficient (Marinova, Sasanguie, et al., 2020). Finally,
the audio-visual paradigm is very suitable for testing smaller children because proficient reading is not required
(for a similar claim see Sasanguie & Reynvoet, 2014). Furthermore, we included both small and large numbers
in order to directly address potential developmental differences between the acquisition of single-digit numbers
and number words without a compound structure (e.g., “vijf” in Dutch or “five”) on the one hand, and the
acquisition of double-digit numbers and number words with a compound structure (e.g., “vijf-en-twintig” in Dutch
or “twenty-five”) on the other. Given that we were interested in the contribution of the ANS to the acquisition
of symbolic numbers we avoided including numbers within the subitising range (i.e., 1-4), whenever it was
possible because for these numbers it has been shown to be processed by the PI (Carey, 2009a, 2009b; Carey
et al., 2017; Hutchison et al., 2020). We, therefore, hypothesised that if ANS supports the processing of both
non-symbolic quantities and symbolic numbers, similar ratio effect should be present in all tasks. Alternatively, if
the symbolic numbers are represented in a separate semantic network, the Ratio effect should be smaller in the
Number words–Digits task, if present.

Method

Participants

A total of 87 children from the first, third and fifth grade of Flemish primary schools were recruited for this studyi.
The university’s ethical committee approved the experimental protocol (file number G- 2019 01 1497). Prior to
testing, informed consent was obtained from the parents. Due to technical problems during the testing, data
from five children were not recorded. In addition, nine children were excluded because they did not complete
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all tasks. Furthermore, six other participants were excluded (i.e., three first-graders, and three third-graders),
because the visual inspection of their data showed that they pressed the same response key throughout the
whole audio-visual task. Consequently, the final sample consisted of 67 children—26 were first-graders (Mage =
6.54 years, SD = 0.58, 12 males), 22 were third-graders (Mage = 8.55 years, SD = 0.60, 15 males), and 19
were fifth-graders (Mage = 10.63 years, SD = 0.67, 9 males). To determine our sample size per age group, we
performed a-priori power analysis using the G*Power software version 3.1 (Faul, Erdfelder, Lang, & Buchner,
2007). To obtain an effect of ratio with size, ηp2 = .19 (i.e., the smallest effect of ratio reported in Appendix
in Marinova et al., 2018), with α = .05 and power set at 95%, the required sample was 15 participants. As
a consequence, power is guaranteed with our current sample size of > 15 per age group. (Data is freely
available, see Supplementary Materials).

Procedure, Tasks, and Stimuli

The procedure, tasks, and stimuli were similar to those used in the previous study by Marinova, Sasanguie,
et al. (2020). Concretely, all children were presented with four audio-visual comparison tasks— (1) a Number
words–Digits task, (2) a Tones–Dots task, (3) a Number Words–Dots task and (4) a Tones–Digits task (see
Figure 1). Numbers were presented auditorily as number words or sequences of beeps, and visually as Arabic
numerals or dot configurations. Both small (4 to 9) and large (13 to 28) number pairs were used, presented
in three Ratio conditions–“Easy”, “Medium”, and “Hard” (see Table 1). Within the large number range, decade
numbers and numbers without compound structure (i.e., 11 and 12) were excluded from the stimulus set.

Table 1

The Stimuli Used in the Current Study, Depicted per Ratio Category, Specific Ratio, and Number Range

Ratio (Category) Easy Medium Hard

Ratio (Exact) 2.00 1.75 1.50 1.33 1.29 1.20 1.17 1.14 1.13

Small Number Range 8-4 7-4 9-6 8-6 9-7 6-5 7-6 8-7 9-8
Large Number Range 26-13 28-16 21-14 28-21 22-17 18-15 21-18 16-14 26-23

Figure 1. Visual Representation of the Four Audio-Visual Comparison Tasks.

The number words were presented in Dutch by a native female speaker. The beep sequences were generated
and controlled for with a custom Python 2.7 script. Each individual tone lasted 40ms. To ensure that the
presentation of the beeps was fast enough to encourage participants to rely on approximations, instead of
counting (Barth et al., 2003; Philippi, van Erp, & Werkhoven, 2008; Tokita, Ashitani, & Ishiguchi, 2013; Tokita
& Ishiguchi, 2012, 2016), the duration of the intertone interval was randomly varied (minimal duration was
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set to 10ms; for further technical details see the Method section in Marinova, Sasanguie, et al., 2020). The
dot configurations were generated with the MATLAB script of Gebuis and Reynvoet (2011), controlling for
non-numerical cues (i.e., total surface, convex hull, density, dot size and circumference). The Arabic numerals
were written in font Arial, size 40. The auditory stimuli (i.e., number words and tones) were presented binaurally
through headphones ( ≈ 65dB SPL). Participants were tested simultaneously in small groups of 3 to 5 children,
in a quiet room at school equipped with individual laptops Dell latitude 5580, 15 inch HD displays (unmodified
factory model) and individual active noise control headphone sets. E-prime 3.0 software (Psychology Software
Tools, http://pstnet.com) was used for controlling the stimulus presentation and recording of the data.

Each trial began with a 600ms white fixation cross, presented in the centre of a black screen. Then, the
auditory stimulus was presented for 2500ms. Immediately after, the visual stimulus was presented for 1000ms.
Afterwards, a blank screen appeared. Children were instructed to judge which stimulus (the auditory or the
visual) was larger by pressing the “a” or “p” buttons on an AZERTY keyboard. Participants could respond
either during the presentation of the visual stimulus or during the blank screen. After the response was given,
there was an intertrial interval of 1500ms before the next trial began. Before each audio-visual task, each child
received 10 practise trials (with feedback). The practise trials were followed by 36 randomly presented trials for
the first-graders, and 72 trials for the third- and fifth-graders (without feedback). For half of the trials, the small
number of the number pair appeared first, followed by the larger number (e.g., 19–21), in the other half of the
trials the order was reversed: first the larger number was presented, then the smaller one (e.g., 21–19). Each
audio-visual task was presented in a separate block. The order of the tasks was fully counterbalanced across
participants.

Results

The mean accuracies are depicted in Table 2. To make our results as informative and useful as possible,
the data were further analysed in both classical and Bayesian statistical frameworks. Given that the Bayesian
approach allows us to evaluate both the alternative and the null hypotheses, we preferred to base the interpre-
tations of our results on the Bayesian analyses (see Wagenmakers et al., 2018a). We report the Bayes factors
(BF) or log(BF) in case the BF values are too large to interpret (Jarosz & Wiley, 2014; Wagenmakers et al.,
2018a, 2018b)ii. To obtain both classical and Bayesian results, we used the JASP statistical package version
0.12 (https://jasp-stats.org).

First, we compared the performance for each condition to the chance level (.50) using (Bayesian) one-sample
t-test. Results showed that first-graders did not perform significantly above chance in almost any condition.
Third- and fifth-graders performed above chance in all tasks (see Table 2). These results indicate that possibly
the audio-visual tasks were too hard for the first-graders. Consequently, we urge the reader to approach the
results from the first-graders with caution.

Second, we performed (Bayesian) repeated measures ANOVA per grade with Task (4 levels: Number words–
Digits, Tones–Dots, Number words–Dots, and Tones–Digits), Ratio (3 levels: Easy, Medium, and Hard), and
Range (2 levels: Small and Large) as within-subject factors. Whenever the assumption of sphericity was
violated, Greenhouse-Geisser correction was applied.
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Table 2

Mean Accuracy Performance (With Their Corresponding Standard Deviations), in the Audio-Visual Comparison Tasks, Depicted per Range,
Ratio, and Grade

Grade

Range

Small Large

Ratio

Easy Medium Hard Easy Medium Hard

Task

M (SD) M (SD) M (SD) M (SD) M (SD) M (SD)

Number Words-Digits
1 .59 (.30) .60 (.24)* .58 (.25) .57 (.28) .58 (.25) .60 (.22)*
3 .83 (.17)*† .82 (.16)*† .77 (.21)*† .78 (.22)*† .78 (.23)*† .79 (.18)*†

5 .93 (.13)*† .88 (.20)*† .91 (.14)*† .90 (.15)*† .91 (.10)*† .90 (.15)*†

Tones-Dots
1 .53 (.21) .47 (.18) .48 (.23) .54 (.19) .48 (.20) .56 (.20)
3 .67 (.18)*† .63 (.15)*† .55 (.11)* .66 (.19)*† .62 (.16)* .53 (.16)
5 .70 (.18)*† .59 (.16)* .59 (.14)*† .73 (.17)*† .65 (.13)*† .59 (.11)*†

Number Words-Dots
1 .53 (.21) .49 (.21) .46 (.17) .56 (.24) .52 (.19) .46 (.22)
3 .74 (.25)*† .71 (.21)*† .67 (.18)*† .72 (.16)*† .64 (.12)*† .58 (.13)*†

5 .87 (.14)*† .78 (.21)*† .75 (.15)*† .82 (.16)*† .72 (.12)*† .65 (.15)*†

Tones-Digits
1 .59 (.21)* .51 (.20) .50 (.21) .57 (.18) .51 (.21) .57 (.21)
3 .66 (.19)*† .54 (.12) .65 (.12)*† .68 (.22)*† .64 (.15)* .54 (.13)
5 .72 (.19)*† .62 (.11)*† .61 (.17)*† .75 (.22)*† .59 (.17)*† .56 (.15)

*p < .05, †BF > 3, compared with chance .50 on a one-sample t-test.

For the first-graders, the results showed only a main effect of Task, F(3, 75) = 3.31, p = .024, ηp2 = .12, BFIncl =
6.78. Post hoc comparison (Bonferroni corrected; posterior odds corrected with null control option) showed
no significant differences between the tasks, psbonf > .05, Cohen’s ds < 0.45, BF10 < 1, except that Number
Words–Digits task yielded higher accuracies than the Number Words–Dots task, pbonf = .04, Cohen’s d = 0.51,
BF10 = 42.40, and Tones–Digits task, BF10 = 11.93 (according to the Bayesian results only).

For the third-graders, there was a main effect of Task, F(1.80, 37.80) = 19.33, pGG < .001, ηp2 = .48, BFIncl =
∞. Post hoc comparisons (Bonferroni corrected; posterior odds corrected) showed that the performance in the
Number Words–Digits Task was significantly more accurately than in all other tasks, psbonf < .001, all Cohen’s
ds > 1.12, all log(BF10) > 17.42. Although classical results showed no significant differences between the
remaining tasks, all psbonf > .05, Bayesian analyses showed that Number Words–Dots task was responded
more accurately than the Tones–Dots, log(BF10) = 3.34, and Tones–Digits tasks, log(BF10) = 2.66. There was
also a main effect of Ratio, F(2, 42) = 14.47, p < .001, ηp2 = .41, log(BFIncl) = 8.50, yielding higher accuracies
for Easy Ratios, compared to both Medium, pbonf = .01, Cohen’s d = 0.65, log(BF10) = 3.54, and Hard Ratios,
pbonf < .001, Cohen’s d = 1.14, log(BF10) = 12.73. The Medium and Hard Ratios did not differ from one another,
pbonf = .08, Cohen’s d = 0.49, log(BF10) = 0.56. The three-way interaction between Task, Range, and Ratio,
was significant, F(6,126) = 2.81, p = .013, ηp2 = .12. Given the small effect size of this interaction compared
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to the effect size of the main effect (see Brysbaert, 2019), and that the interaction was not supported by the
Bayesian results, BFIncl < 1, we decided to not conduct further post-hoc tests. The remaining main effects and
interactions were not significant, all ps > .05, all BFIncl < 1.00.

For the fifth-graders there was a main effect of Task, F(3,54) = 45.45, p < .001, ηp2 = .72, log(BFIncl) = 31.60.
Post hoc comparisons (Bonferroni corrected; posterior odds corrected) showed that the performance in the
Number Words–Digits task was significantly better than in all other tasks, psbonf < .001, all Cohen’s ds > 1.20,
all log(BF10) > 20.52. The performance in the Number Words–Dots was more accurate than the performance in
the Tones–Dots, pbonf < .001, Cohen’s d = 1.07, log(BF10) = 16.96, and in Tones–Digits, pbonf < .001, Cohen’s
d = 1.09, log(BF10) = 16.23 tasks. The Tones–Dots and Tones–Digits tasks did not differ from one another,
pbonf = 1.0, Cohen’s d = 0.012, log(BF10) = -2.26. There was also a main effect of Ratio, F(2,36) = 25.66, p
< .001, ηp2 = .58, log(BFIncl) = 19.84, yielding higher accuracies for Easy Ratios, compared to both Medium,
pbonf < .001, Cohen’s d = 1.21, log(BF10) = 13.48, and Hard Ratios, pbonf < .001, Cohen’s d = 1.57, log(BF10) =
20.30. The Medium and Hard Ratios did not differ from one another, pbonf = .36, Cohen’s d = 0.36, log(BF10) =
-0.84. There was also a Task by Ratio interaction, F(6,108) = 2.81, p = .014, ηp2 = .14, which was anecdotally
supported by the Bayesian ANOVA, BFIncl = 1.78 (see Figure 2). Post hoc ANOVAs per Task with Ratio
as within-subject factor showed no signficiant Ratio effect in the Number Words–Digits task, F(2,36) = 0.54,
p = .588, ηp2 = .03, BFIncl = 0.21. However, a Ratio effect was present in the Tones–Dots task, F(2,36) = 6.54,
p = .004, ηp2 = .27, BFIncl = 18.65, in the Number Words–Dots task, F(2,36) = 13.58, p < .001, ηp2 = .43, BFIncl =
579.14, and in the Tones–Digits task, F(2,36) = 11.97, p < .001, ηp2 = .40, BFIncl = 286.96.

Classical results also showed significant Task by Range interaction, F(3,54) = 3.06, p = .036, ηp2 = .15, which
was not supported by the Bayesian analyses, BFIncl = 0.27. The remaining main effects and interactions were
not significant, all ps > .05, all BFIncl < 1.00.

Figure 2. The interaction between task and ratio in the 5th graders. Vertical bars denote 95% confidence intervals (CI).

Overall, both Bayesian and classical ANOVAs yielded a similar pattern of results. Specifically, third- and
fifth-graders performed better in the Number Words–Digits task and Number Words–Dots task, followed by the
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Tones–Digits and Tones–Dots tasks. The performance of these children was also ratio-dependent, indicating
that ANS has been addressed. Interestingly, in fifth-graders, there was also some evidence for an interaction
between Task and Ratio, yielding results, similar to the previous studies in adults: the effect of Ratio was
present in all tasks containing quantities (Number Words–Dots, Tones–Dots, and Tones–Digits), but not in
the purely symbolic task (Number Words–Digits; Marinova et al., 2018; Marinova, Sasanguie, et al., 2020;
Sasanguie et al., 2017). Taken together, these two observations possibly suggest that the performance in the
Number Words–Digits task is underlined by a distinct cognitive mechanism.

Third, to investigate further whether the performance in the tasks shared a common cognitive mechanism we
performed bivariate Pearson’s (Bayesian) correlations between the four audio-visual tasks (see Sasanguie et
al., 2017, p. 236). Given that first-graders performed at the chance level, the correlations were computed for
the third- and fifth-graders only. The correlations are depicted in Table 3. For the third-graders, the performance
on the Number Words–Digits Task correlated only with the performance on the Number Words–Dots task,
but not with the performance on the Tones–Dots and Tones–Digits tasks. However, all the tasks containing
non-symbolic quantities (i.e., Number Words–Dots, Tones–Dots, and Tones–Digits) correlated with each other.
For the fifth-graders, the Number Words–Digits task did not correlate with any of the remaining tasks. Signifi-
cant correlations were present between the Tones–Digits and Tones–Dots tasks, and between the Number
Words–Dots, and Tones–Dots tasks.

Table 3

Bivariate (Bayesian) Correlations Between the Numerical Comparison Tasks for the 3rd and 5th Graders

Third-graders, N = 22 1 2 3 4
1. Number Words–Digits —
2. Tones–Dots .31 —
3. Number Words–Dots .81*† .52*† —
4. Tones–Digits .37 .50*† .58*† —

Fifth-graders, N = 19 1 2 3 4
1. Number Words–Digits —
2. Tones–Dots .20 —
3. Number Words–Dots .43 .41 —
4. Tones–Digits .45 .68*+ .59*† —

*p < .05. †BF > 3.

Overall, these results were in line with the findings of Sasanguie et al. (2017) and showed that for the third-
and fifth-graders, there was a tendency for the tasks containing quantities to be intercorrelated (i.e., Number
Words–Dots, Tones–Dots, Tones–Digits), while the purely symbolic task (Number Words–Digits) tended to not
correlate with these tasks. These results are also in line with the observation of the ANOVA analysis and
suggest that numerical tasks, involving non-symbolic quantity processing most likely share common cognitive
mechanisms, while the symbolic number processing is underlined by distinct cognitive processes. Neverthe-
less, this does not refute the possibility that some pre-verbal number system, such as the Parallel Individuation
system (PI; see Carey, 2009a), is involved in the early stages of the symbolic number acquisition. We elaborate
on this possibility in the Discussion section.
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Discussion

Previous studies claimed that the processing and acquisition of symbolic numbers are deeply rooted in the ANS
and are continuously supported by this system throughout development. Recent findings, however, suggest
that symbolic numbers may be processed and acquired independently from the ANS. In light of this latter claim,
the current study aimed to re-evaluate the role of the ANS in the acquisition of symbolic numbers. To this
end, first-, third-, and fifth-graders performed four audio-visual tasks, testing their abilities to compare pairs of
symbolic and non-symbolic quantities within the small and large range, and across easy, medium and hard
ratios. Overall, our results suggest that it is unlikely that the ANS underlies the acquisition and the processing of
symbolic numbers.

First, both classical and Bayesian results clearly illustrated that symbolic and non-symbolic quantity processing
tasks exhibit different behavioural patterns. Specifically, our results showed that in third- and fifth-graders, the
performance is much better in the Number Words–Digits task, and slightly better in the Number Words–Dots
task than in the other two tasks, i.e., the Tones–Dots and Tones–Digits tasks. A somewhat similar tendency
for higher accuracy in the Number Words–Digits tasks was observed in first-graders too. However, because
the first-graders performed the audio-visual tasks hardly above chance, the behavioural pattern for this age
group remains inconclusive. Nevertheless, when taken together, these results suggest that in the Number
Words–Digits and Number Words–Dots tasks the developmental growth is larger, while in the Tones–Dots and
Tones–Digits tasks the growth seems to be less steep after the first grade. These observations are difficult to
reconcile with previous claims, arguing that the increase in ANS acuity drives the growth of symbolic number
knowledge (e.g., Halberda & Feigenson, 2008; Piazza, 2010; Starr, Libertus, & Brannon, 2013). Concretely,
our results show that the increase in the performance on the purely non-symbolic task (i.e., Tones–Dots) is
much slower and is not sufficient to support the growth in the Number Words–Digits task. Therefore, the results
obtained in the current and some previous studies (e.g., Hurst et al., 2017; Marinova, Reynvoet, et al., 2020;
see also Hutchison et al., 2020; Lyons et al., 2018) suggest that the numerical development may follow a
different developmental path(e.g., Goffin & Ansari, 2019; Lyons et al., 2018).

Alternatively, the steeper developmental growth observed in the Number Words–Digits task and to a lesser
extend in Number Words–Dots task, compared to the other tasks containing tone sequences (i.e., Tones–Dots
and Tones–Digits) could be due to the following reason. The sequential presentation of the tones may have
put an additional cognitive load on the children’s working memory, possibly making the extraction of numerical
information harder. However, previous audio-visual studies, have demonstrated that five-year-old children suc-
cessfully extract numerical information from tone sequences in order to compare them with visually presented
dot patterns (e.g., Barth, La Mont, Lipton, & Spelke, 2005).

Second, in line with the claims above, in fifth-graders, there was also an interaction between the compari-
son tasks and the Numerical Ratio. Concretely, we observed ratio effects (i.e., the signature of ANS being
addressed) in all tasks, containing at least one non-symbolic quantity (i.e., Tones–Dots, Tones–Digits, Number
Words–Dots), but the effect was absent in the Number Words–Digits task. These results corroborate with
previous studies in adults (e.g., Marinova et al., 2018; Marinova, Sasanguie, et al., 2020; Sasanguie et al.,
2017), where a similar pattern of results was obtained. These findings seem to suggest that the numerical
ratio is not as crucial a factor for the processing of symbolic numbers as previously argued (e.g., Matthews et
al., 2016; Piazza, 2010). The lack of a ratio effect in the purely symbolic task is surprising in light of previous
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findings (e.g., Mundy & Gilmore, 2009) and models according to which, in numerical comparison task, ratio
effect should be always present, because it is a result of a response–related strategy (Verguts & Fias, 2004;
Verguts, Fias, & Stevens, 2005; see also Krajcsi et al., 2016). However, it might be due to the (sequential)
audio-visual presentation technique with relatively long presentation times that was adopted in this study. In
a recent study with audio-visual presentation, Lin and Göbel (2019) demonstrated that the size of the symbol-
ic ratio effect decreased as the stimulus onset asynchrony (SOA) between both numbers increased. More
specifically, the authors observed a larger distance effect when the digit and number words were presented
simultaneously (i.e., SOA = 0ms), and a smaller distance effect when longer SOAs were used (e.g., SOA = 500
ms). Although the precise effect of SOA on the numerical distance effect needs to be examined further, it has
no repercussions for our conclusion, which is based on the interaction of the ratio effect with the task.

Third, correlational analyses in third- and fifth-graders showed that while tasks containing quantities (i.e.,
Tones–Dots, Number Words–Dots, Tones–Digits) tended to be related to each other, the symbolic number
processing task (i.e., Number Words–Digits) was not. These results are in line with the findings of Sasanguie et
al. (2017) and seem to suggest that the processing of quantities and symbolic numbers are founded by different
cognitive mechanisms.

Overall, in light of these findings, it seems implausible that an imprecise pre-verbal system such as the ANS,
showing a qualitatively distinct and “slower” developmental path than the symbolic number processing, is
capable of providing continuous support in the discrimination of symbolic numbers (Krajcsi et al., 2018; Núñez,
2017). These data are instead in line with recent approaches in numerical cognition, according to which sym-
bolic number system develops independently of the ANS (e.g. Carey, 2009a, 2009b; Noël & Rousselle, 2011;
Núñez, 2017; Reynvoet & Sasanguie, 2016; Wilkey & Ansari, 2020). These models, however, do not rule out
the possibility that at the early stages of symbolic number acquisition, children rely on some pre-verbal number
system, such as the PI system (Carey, 2009a, 2009b). Concretely, it has been suggested that, children possibly
rely on the PI system to acquire the meaning of the small numerals (up to 4) by associating them with small
sets of items (Carey, 2009a, 2009b; Carey & Barner, 2019; Carey et al., 2017; Hutchison et al., 2020). Later
on, children acquire larger numerals by building associative relations between the symbols themselves. These
relations are further forged increasingly stronger throughout development as a result of children’s increasing
experience with symbolic numbers through counting procedures and formal schooling (see also Reynvoet &
Sasanguie, 2016). Consequently, a symbolic number network is formed where numbers are processed in terms
of their mutual connections. These various connections become more numerous and sophisticated as a result
of the semantic associations acquired throughout development. For example, numbers can be represented
in terms of their order associations, e.g., 1-2-3, but also based on whether they are odd (e.g., 1-3-5), even
(e.g., 2-4-6), multiplied by 10 (e.g., 10-20-30 or 10-100-1000) etc. (e.g., Krajcsi et al., 2016; Reynvoet &
Sasanguie, 2016; Vos et al., 2017). Our results provide support for these latter findings by demonstrating
that such symbolic number network emerges independently from the ANS from an early age, as opposed to
emerging only in adulthood as previously argued (Lyons, Ansari, & Beilock, 2012).

In conclusion, the current cross-sectional study examined the role ANS plays in the acquisition of symbolic
numbers. Overall, our results showed that the symbolic number processing undergoes substantial and faster
developmental growth in performance, while the non-symbolic quantity processing performance changes to a
lesser extent. Moreover, the ratio effect (the signature of ANS being addressed) was absent in the symbolic
number task. In contrast, the effect was present in all tasks, containing at least one non-symbolic quantity (i.e.,
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Number Words–Dots, Tones–Dots, Tones–Digits). These latter tasks also tended to be correlated with each
other, and not with the Number Words–Digits task. These results show that it is unlikely that ANS provides
continuous support in the processing of symbolic numbers, and are rather in line with studies suggesting
distinct developmental trajectories for symbolic numbers and non-symbolic quantities (e.g., Carey, 2009a,
2009b; Reynvoet & Sasanguie, 2016; Wilkey & Ansari, 2020).

Notes

i) With respect to the credibility and the scientific integrity of our research, we report how we determined our sample size, all
data exclusions (if any), all manipulations, and all measures in the study (Simmons, Nelson, & Simonsohn, 2012).
ii) The Bayes Factor (BF10 ) is the ratio of the likelihood of the alternative hypothesis and the likelihood of the null
hypothesis. For statistical analyses, involving a larger number of factors such as repeated-measures ANOVA, it is
recomeded to report the BFInclusion (see Wagenmakers et al., 2018b for the rationale). Conventionally, the evidence
provided by the BF values is categorized as “anecdotal” (for values between < 1 and 3), “moderate” ( for values between 3
and 10), ”strong” ( for values between 10 and 30), “very strong” (for values between 30 and 100), and “extreme” (for values
> 100) (Jeffreys, 1961).
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