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Abstract
Mathematical notation includes a vast array of signs. Most mathematical signs appear to be symbolic, in the sense that their meaning is
arbitrarily related to their visual appearance. We explored the hypothesis that mathematical signs with iconic aspects – those which visually
resemble in some way the concepts they represent – offer a cognitive advantage over those which are purely symbolic. An early
formulation of this hypothesis was made by Christine Ladd in 1883 who suggested that symmetrical signs should be used to convey
commutative relations, because they visually resemble the mathematical concept they represent. Two controlled experiments provide the
first empirical test of, and evidence for, Ladd’s hypothesis. In Experiment 1 we find that participants are more likely to attribute
commutativity to operations denoted by symmetric signs. In Experiment 2 we further show that using symmetric signs as notation for
commutative operations can increase mathematical performance.
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Notations play a crucial role in the development and advancement of mathematics and science. Some of the
oldest records of human writing are notches on bones, a simple notation to keep track of quantities. Today, it is
difficult to imagine a world without numerals: we use the decimal place-value notation based on the ten digits
from ‘0’ to ‘9’ in our daily lives and they form the basis of our communication and commerce. But what features
do good notations have? Here we investigate one possible answer to this question, by exploring whether
symbols that share some of the properties of the mathematical concepts they represent are 'better' than those
which do not.

The American philosopher, logician, and mathematician Charles Sanders Peirce (1894, 1902) famously distin-
guished between iconic signs, “which serve to convey ideas of the things they represent simply by imitating
them” (1894, p. 5), and symbolic signs, in which the relation between the sign and its representation is purely
arbitrary, stipulated by convention. For example, if we represent the fact that we have four oranges by ‘||||’, then
we just need to count the number of strokes in the tally-notation to obtain the quantity it represents. In contrast,
nothing in the symbol ‘4’ gives us a hint about the quantity it represents. Through education, we have learned
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to associate this particular sign with the number four, but in principle we could have used any other sign for this
purpose (for an overview of the historical development of mathematical notation see Cajori, 1993 and Mazur,
2014).

Our current notations for natural numbers and basic arithmetic operations, such as addition, subtraction,
multiplication and division, seem to use only symbolic signs for the operators (e.g. ‘+’, ‘-‘, ‘×’, ‘/’) . Could the use
of more iconic signs for mathematical operators contribute to the effectiveness of notations? Our goal in this
paper is to investigate this possibility. We begin by reviewing one early articulation of this hypothesis, due to
Christine Ladd.

Ladd’s Hypothesis

Christine Ladd (1847-1930) was the first woman to complete all requirements for a Ph.D. in mathematics and
logic at Johns Hopkins University in 1883, where she studied with J.J. Sylvester and C.S. Peirce. However,
since the university did not officially admit women at the time, she was not granted her Ph.D. until 1926.
From 1884 onwards she was known as Christine Ladd-Franklin. In addition to mathematics and logic, she also
worked on experimental psychology and the theory of color vision (Cadwallader & Cadwallader, 1990).

Our interest here concerns Ladd’s views on notational choices in mathematics. While the choice of individual
signs in a symbolic notation (which we refer to as ‘symbols’) is purely conventional, the question arises whether
some symbols are better suited than others for expressing certain contents. In other words, can we find some
effect that the shape of a symbol has on the way it is used? If so, such cognitive considerations could be used
to guide the choice of individual symbols.

Ladd's hypothesis regarding the relation between a symbol and its meaning was first articulated in the early
literature on notations for logic. In a discussion of different systems of logic, she compared Peirce’s symbol
for implication, ‘⤙’ with that of Hugh MacColl, who used a colon, ‘:’, and remarked: "The copula ‘⤙’ has
an advantage over the colon ‘:’ in that it expresses an unsymmetrical relation by an unsymmetrical symbol"
(Ladd, 1883, pp. 24–25). In this remark she was drawing attention to the fact that the implication relation is
not symmetric, because ‘A implies B’ means something different from ‘B implies A’. From her comparison of
the copula and the colon, we can further infer that Ladd understood ‘symmetric’ in regard to symbols as a
reflectional symmetry along a vertical axis.

Although Ladd made her remark in the context of symbols for logical relationships such as implications,
biconditionals, and so on, the issue also applies to binary operations, which are perhaps more pertinent to
school-level mathematics education. Binary operations can be understood as mathematical rules for combining
two elements of a given set to produce a third. For example, the addition of integers is a simple binary
operation: two integers are combined to produce a third. Moreover, addition is a symmetric, or commutative,
binary operation: for any two integers a and b, a + b = b + a. Not all binary operations are commutative. For
instance, subtraction is not: in general a – b ≠ b – a.

In view of Ladd's remark concerning logical notation, it seems reasonable to suppose that she would have
applauded the symmetrical nature of the addition symbol, but criticised the symmetry of the symbol for subtrac-
tion. In sum, in the context of binary operations we can formulate the following principle that underlies Ladd’s
assessment: Commutative operations should be expressed by symmetric symbols. Following this principle
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would render the operation symbol iconic of the mathematical property it represents. Note that symbols can
be symmetric along one or more lines of symmetry. Here, like Ladd, we are particularly concerned with those
that exhibit reflectional symmetry along the vertical axis. This is because binary operations in mathematics, like
written English, are usually displayed horizontally from left to right (e.g., a + b = c). A symbol with a vertical
line of symmetry might therefore plausibly convey the possibility of swapping the different sides of that line of
symmetry (e.g., that the elements a and b could be switched in the equation above). In contrast, a symbol that
is symmetric only along the horizontal line of symmetry (like the symbol for the less-than relation, ‘<’) does
not, in European languages such as English at least, offer the same visual affordance, as the elements being
combined by the binary operation are not written above and below the symbol.

Symbolising Commutative Operations

It is notable that symbols typically used to represent binary operations do not always follow Ladd’s principle.
While the choice of our symbol for addition, ‘+’, does (the symbol is symmetric and the operation is commuta-
tive), the symbol for subtraction does not. Subtraction is not commutative but the symbol ‘−’ is nevertheless
symmetric. Similarly, some of the symbols we use to represent the (non-commutative) division operation are
asymmetric, whereas others are not (compare ‘10/2’ with ‘10÷2’). Analogous observations can be made about
advanced mathematics. For instance, introductory abstract algebra textbooks typically represent an arbitrary
group operation (which is not in general commutative) with a symmetric symbol such as ‘✭’ or ‘•’ (e.g., Dummit
& Foote, 2004; Smith, 2015). Similarly, in linear algebra the non-commutative matrix multiplication operation is
typically represented by a symmetric symbol such as ‘⊙’ (Allenby, 1995), or simply by (symmetric) juxtaposition.

Indeed, an analysis of mathematical typesetting practice reveals that the majority of symbols used to represent
binary operations are symmetric. Of the 59 primary symbols used to represent binary operations in LaTeX, a
common mathematical typesetting language, 45 (76%) are symmetric along their vertical axes (we considered
those symbols available in LaTeX by default or within the American Mathematical Society’s amssymb package,
Pakin, 2017, Tables 50-51). But binary operations are not in general commutative.

Ladd did not elaborate what advantages she hypothesised would be gained by following the principle that
commutative operations should be expressed by symmetric symbols. Neither did Schröder (1890, p. 119),
who similarly criticised “the unsymmetrical presentation of so many symmetric relations” in natural language. It
seems plausible to assume that both Ladd and Schröder’s views were based upon a belief that an alignment
between the visual properties of a symbol and the formal properties of the mathematical relation it expresses
would have a cognitive effect of some sort, perhaps that such an alignment would make it easier to associate
the symbol with the particular relation in question. This, in turn, might be expected to lead to more fluent
mathematical performance. Earlier in the 19th century Charles Babbage (1827, p. 370) formulated a similar
idea: “The advantage of selecting in our signs, those which have some resemblance to, or which from some
circumstance are associated in the mind with the thing signified, has scarcely been stated with sufficient force:
the fatigue, from which such an arrangement saves the reader, is very advantageous to the more complete
devotion of his attention to the subject examined”.

To our knowledge, despite the long history and apparent plausibility of Ladd’s hypothesis, it has never been
empirically tested. This is what we set out to do in the experiments reported here. We derived two research
questions from Ladd’s hypothesis: (1) Are symmetric symbols intuitively associated with commutative binary
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operations? and (2) Is the use of iconic symbols advantageous for students’ mathematical engagement with
binary operations?

Study 1

In this first study, we investigated whether the use of vertically symmetric symbols in mathematical statements
depicting binary operations would bias people to endorse the commutativity of the operation. By comparing
whether participants endorsed commutativity more often when symbols followed Ladd’s hypothesis than for
the symbols with horizontal symmetry which did not follow Ladd’s Hypothesis, we were able to test whether
vertically symmetric symbols are interpreted iconically, in the sense that they are intuitively associated with
commutative binary operations.

Method

We designed a simple task to test people’s intuitive judgement about the mathematical properties of a binary
operation while we varied the visual properties of the symbol used. We used a range of arbitrary symbols to
depict a binary operation (i.e. ‘3 ♠ 4’). Participants were asked whether they believed a statement about the
commutativity of these operations to be true or false (‘3 ♠ 4’ is equal to ‘4 ♠ 3’ ?). We presented the operations
once with the symbols having a vertical axis of symmetry (symmetrical as understood by Ladd) and once with
the symbols rotated by 90° to change the symmetry axis to be horizontal.

The intended sample size and analysis plan was preregistered prior to data collection (see Supplementary
Materials).

Thirty undergraduate and postgraduate students (14 male, 16 female, mean age = 26.23) participated in this
study. Participants were invited to the Cognition Laboratory at Loughborough University where they completed
the computerized task individually. The full duration of each session was about 20 minutes and participants
were compensated for their time with £4.

The study task was programmed using the PsychoPy 3 software (Peirce et al., 2019) and was presented
on a 17’’ laptop. At the beginning of the task, participants were instructed that they would see mathematical
statements using unfamiliar symbols and should judge whether they believe the statement on the screen to be
true or false. Participants were explicitly told that no calculation was required and that they might not know the
correct answer, but should follow their intuition when judging the statements. Participants used the left and right
arrow key to indicate whether they believed the statement in each trial to be true or false. The assignment of
the arrow keys was counterbalanced between participants.

Figure 1. Example of a commutativity statement.

Note. Participants were asked to judge whether the statement was true or false.
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Participants judged 210 trials in an individually randomized order. A trial consisted of a binary operation,
represented by a non-mathematical symbol, and a written statement about its relationship to the inverted form.
An example trial is shown in Figure 1.

Out of all 210 trials, 140 asked participants for a judgement about the commutativity of the operation. Those
trials stated that the operation ‘is equal to’ its inverse. The statements about the relationship in the remaining
filler trials were either ‘is larger than’ or ‘is smaller than’ and responses to those trials were not analysed.

We constructed the trials from seven pairs of numbers between 1-99. Each pair was presented with each
of ten different non-mathematical symbols (shown in Figure 2). One presentation was with the symbol being
symmetrical on the vertical axis, one was with the symbol rotated by 90° to be symmetrical on the horizontal
axis. This allowed us to compare the endorsement of commutativity statements on 70 trials where symbols had
vertical symmetry with the endorsement of commutativity statements on 70 trials where symbols had horizontal
symmetry. The raw data are freely available (see Supplementary Materials).

Figure 2. The symbols used for notation. Rotation of symbols by 90° created sets of symbols with a horizontal or vertical
symmetry axis.

Results

As shown in Figure 3, participants endorsed commutativity for symbols with vertical symmetry on average in
66.8% (SD = 26.1%) of the trials. Statements using symbols with horizontal symmetry were less frequently
endorsed as commutative (M = 26.7%, SD = 25.7%). As preregistered, we calculated a one-sided paired
t-test to compare the average frequency of commutativity endorsement between symbols with vertical and
horizontal symmetry. In addition to the frequentist t-test, we also calculated a one-sided Bayes factor, using
the default prior (a half Cauchy distribution with scale parameter 0.707) in favour of a difference. Participants
endorsed commutativity significantly more frequently for statements that used symbols with vertical symmetry,
which followed Ladd’s Hypothesis, than for the symbols with horizontal symmetry, which did not follow Ladd’s
Hypothesis, t(29) = 5.57, p < .001, d = 1.02, BF10 = 7824.42. A robustness check revealed that this Bayes
factor was not substantially affected by the choice of prior width.
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Figure 3. Violin plots showing the distribution of commutativity endorsement in trials using symbols with horizontal symmetry
and trials using symbols with vertical symmetry. The mean and ±1 SE of the mean are shown.

***p < .001.

We followed this main analysis up by calculating a generalized linear mixed model with a binomial link func-
tion to account for the random effects of participant and symbols. The aim of this analysis was to model
random intercepts for each participant and symbol. This technique controls for the variation in the data that is
introduced by participants differing in their general tendency to endorse a statement and some of the symbols
generally being endorsed more frequently than others; both regardless of the symmetry axis of the symbol.
The model was specified with an unstructured covariance structure and parameters were estimated using
Laplace Approximation. Using this model, we calculated that statements with vertically symmetric symbols had
significantly higher odds to be endorsed as commutative than statements with horizontally symmetric symbols,
OR = 2.01, 95% CI [1.86; 2.16], p < .001. The analysis of the modelled random intercepts also indicated that
the general endorsement rate only varied slightly between symbols (SD = 0.30) and varied more considerably
between participants (SD = 1.05). Descriptive analyses of the effect for every individual participant and for
every individual symbol are part of the Supplementary Materials.

In sum, we found very strong evidence that the notation for binary operations influences how that operation is
intuitively interpreted. Specifically, in line with Ladd’s hypothesis, using symbols with a vertical axis of symmetry
seems to be intuitively associated with commutativity. In other words, the visual properties of symbols for binary
operations influence the mathematical properties that are intuitively attributed to these operations, as if the
symbols were indeed iconic.
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Study 2

Given the findings from Study 1, it is natural to ask whether using symbols consistent with Ladd’s hypothesis
would be advantageous for student’s mathematical learning. To our knowledge, no research has directly inves-
tigated this issue. However, it is known that learners do often inappropriately assume that binary operations
are commutative. For example, Mitchell (1983) reported that around 50% of first, second, and third grade
children responded to mathematical problems in ways consistent with a belief that subtraction is commutative.
These findings were consistent with Weaver’s (1972), who noted that a belief in the commutativity of single-digit
subtraction can lead children to assert, for example, that 78 – 45 = 33 (since 7 – 4 = 3 and 8 – 5 = 3). The
results from Study 1 suggest that the symmetry of the minus sign might contribute to these difficulties.

The proposal that using symmetric symbols to represent non-commutative operations might cause problems
for learners is consistent with recent work that has found that the visual properties of notations are cognitively
relevant. As an example, Landy and Goldstone (2007) found that the spacing in simple arithmetic statements
could be used to support or undermine students' understanding of the order of operations: they found that ‘a×b
+ c×d’ was more likely to be correctly understood than ‘a × b+c × d’, due to the differences in spacing around
the operation symbols. Similarly, Kirshner and Awtry (2004) found that the 'visual salience' of invalid algebraic
manipulations was a major cause of student errors. Might similar visual properties, of the type articulated in
Ladd's hypothesis, support or undermine students' engagement with binary operations?

Method

We sought to test Ladd's principle by using an artificial symbol learning paradigm. Specifically, we asked wheth-
er it is better to associate vertically symmetric symbols with commutative operations and vertically asymmetric
symbols with non-commutative operations (the congruent condition) than it is to associate asymmetric symbols
with commutative operations and symmetric symbols with non-commutative operations (the incongruent condi-
tion).

The intended sample size and analysis plan were preregistered prior to data collection (see Supplementary
Materials).

Fifty-eight undergraduate mathematics students (34 men, 24 women, mean age = 19.9 years) participated dur-
ing a statistics lecture at Loughborough University. Participants were randomly assigned to either the congruent
or incongruent conditions based on the parity of their student ID numbers (which are assigned pseudo-random-
ly upon the students' enrolment at the university). Participants worked through booklets individually in silence.
The experiment consisted of three parts. First, participants read an information sheet about the experiment,
gave consent for their data to be used in the analysis, and self-reported their gender and age. In the second
part, the learning phase, participants were given three minutes to read about, and learn, a set of novel symbols
to represent addition, subtraction, multiplication, and division.

In the congruent condition participants were taught to associate symmetric symbols (◇, ◆) with addition and
multiplication, and asymmetric symbols (▷, ▶) with subtraction and division. In the incongruent condition these
symbols were reversed so that participants associated asymmetric symbols with the commutative operations
and symmetric symbols with the non-commutative operations. The full text of this section, for those in the

Iconicity in Mathematical Notation 384

Journal of Numerical Cognition
2020, Vol. 6(3), 378–392
https://doi.org/10.5964/jnc.v6i3.314

https://www.psychopen.eu/


congruent condition, are shown in Figure 4. The text in the incongruent condition was identical, except that the
◇ and ◆ symbols were switched with the ▷ and ▶ symbols.

After reading these instructions for three minutes participants were asked to turn over the page. This revealed
the test phase, which consisted of a simple fluency arithmetic task. Specifically, participants were asked to
solve as many simple two-term arithmetic problems as they could in three minutes.

The booklet contained a total of 396 arithmetic problems, split equally between the four operations, and were
presented in a different randomised order for each participant. The problems were designed so that participants
could not infer the operation from the identity of the numbers in the problem (for instance, if we had asked a
participant to solve 36 ◆ 41 they might reasonably have inferred that ◆ did not represent division).

For example, a participant may have seen:

1. Solve: 40 ▷ 2 =

2. Solve: 18 ◆ 2 =

3. Solve: 2 ◇ 2 =

4. Solve: 24 ▶ 1 =

And so on. All 396 problems, together with example test booklets for each of the conditions, are provided in the
Supplementary Materials. Our dependent measure was the fluency score: the number of arithmetic problems
each participant solved correctly in the three minutes of the test phase. The raw data are also available (see
Supplementary Materials).

Figure 4. Instructions for the learning phase for participants in the congruent condition.
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Results

Two participants failed to meet our preregistered inclusion criteria (their fluency scores were not within 3 SDs of
the mean) and were excluded. This left 56 participants in the main analysis.

The mean numbers of problems correctly answered in each condition are shown in Figure 5. In the congruent
condition participants' mean fluency score was 64.3 (SD = 18.6), which was significantly higher than in the
incongruent condition, 52.6 (SD = 10.6), t(53.92) = 3.013, p = .004, d = 0.777. A one-sided Bayesian t-test,
using the default prior (a half Cauchy distribution with scale parameter 0.707) yielded a Bayes factor of 9.020
in favour of the alternative hypothesis, and a robustness check revealed that this result was not substantially
affected by the choice of prior width.

Figure 5. Violin plots showing the distribution of fluency scores for participants in the congruent and incongruent conditions.
The mean and ±1 SE of the mean are shown.

**p < .01.

In sum, in line with Ladd's principle, we found that participants in the congruent condition outperformed those
in the incongruent condition. A caveat to note here is that we did not assess or control for potential arithmetic
fluency differences between the congruent and incongruent conditions. However, those participants who were
randomly assigned to learn to associate vertically symmetric symbols with commutative operations and vertical-
ly asymmetric symbols with non-commutative operations could perform arithmetic operations more fluently than
those participants who learned to associate asymmetric symbols with commutative operations and symmetric
symbols with non-commutative operations.
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General Discussion

Christine Ladd formulated her hypothesis that commutative operations should be expressed by symmetric
symbols almost 150 years ago. In two studies we have provided what we believe to be the first empirical test
of her hypothesis. We demonstrated that the binary operation symbols that have a vertical axis of symmetry
are more likely to be intuitively associated with commutativity than those with a horizontal axis of symmetry. We
further found that Ladd's hypothesis was supported in the context of basic arithmetic where the use of iconic
notation proved advantageous for students when solving problems.

These results suggest that despite the seemingly arbitrary nature of a symbol's visual appearance, it may nev-
ertheless have some iconic features that influence the manner in which that symbol is processed. Specifically,
our studies support Ladd’s hypothesis that it is advantageous if symbols have iconic aspects that connect
in some way to the represented mathematical concept. This observation extends Landy and Goldstone's
(2007) finding that perceptual grouping influences behaviour in order-of-operations contexts. Like Landy and
Goldstone, we found that the processing of formal mathematical symbols has a non-trivial visual component.

But what mechanism underlies our results? Whereas Landy and Goldstone (2007) appealed to perceptual units
to account for their findings (e.g., ‘4×2’ is more likely to be perceived as a unit than ‘4 × 2’, because of the
affordances of the spacing around the operation symbol), a similar mechanism does not seem to apply in our
context. Rather, our finding from Study 2, that arithmetic fluency on an immediate post-test is facilitated by
notations that use congruent symbols, seems to involve memorability rather than perceptual units. What makes
iconic symbols more memorable when looking at the case of symmetry and commutativity? Ladd seemed
to understand commutativity to be a symmetric operation due to the interchangeability of the two operands
while the result of the operation is unchanged. This concept of interchangeability along a vertical axis seems
congruent with notation using a symbol that is vertically symmetrical (i.e. has an identical left and right side).

There are theoretical reasons to suppose that congruent symbols might be more memorable than incongruent
symbols. Consider onomatopeias: words such as ‘buzz’, ‘snap’ or ‘whack’ whose pronunciation is related to
their semantic meaning. Phenomena of this kind have been studied under the label of ‘sound-symbolism’ and
‘ideophones’ (Dingemanse, 2012; Perniss & Vigliocco, 2014). A congruent notation can be seen as a visual
version of an onomatopeia: rather than its sound being related to its semantics, its shape is. Since it is well
established that onomatopoeias are more memorable than non-omomatopoeias (e.g., Inoue, 1991; Lowrey,
Shrum, & Dubitsky, 2003), it seems plausible to suppose that the meaning of congruent symbols would be
more memorable than the meaning of incongruent symbols.

But do linguistic shape-semantic associations, analogous to the sound-semantic associations involved in
onomatopeias exist? Several sources of evidence suggest that they do. It has been known since the early
work of gestalt psychologists (e.g., Köhler, 1929) that humans spontaneously associate shapes with sounds.
Perhaps the best known demonstration of this is Ramachandran and Hubbard's (2001) observation that when
participants are presented with two shapes, one zig-zagged and one curvy, and told that they are the Martian
symbols ‘kiki’ and ‘bouba’, around 95% assume that the zig-zagged symbol is ‘kiki’ and the curved symbol
is ‘bouba’. Although this result is typically reported as demonstrating a shape-sound association, it is worth
noting that the sound and the visual word are confounded here: both the sound ‘kiki’ and the word ‘kiki’ share
properties with the kiki symbol (specifically, there are sharp changes in visual direction of the lines in the lines
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of the symbol, there are sharp changes in the visual direction of the letters in the word ‘kiki’, and there are
sharp changes in the phonemic inflections of the sound ‘kiki’), and both the word ‘bouba’ and the sound ‘bouba’
share properties with the bouba symbol. Interestingly, the associations invoked by the word ‘kiki’ go beyond the
visual modality. Gallace, Boschin, and Spence (2011) asked participants to taste various foods and rate them
on a number of dimensions, one of which was kiki-bouba (i.e. one end of a Likert scale was anchored by ‘kiki’,
the other by ‘bouba’). They found that cheddar cheese was rated as being more kiki than brie, and that regular
chocolate was rated as being more bouba than mint chocolate.

More directly related to our work, the early gestalt psychologists also demonstrated that shapes can spontane-
ously generate semantic associations. For instance, Poffenberger and Barrows (1924) asked participants to
match various adjectives to symbols formed of either curved or angular lines. They found large agreement that
words such as ‘sad’, ‘quiet’ and ‘gentle’ were best represented by curves, whereas ‘agitating’, ‘furious’ and
‘powerful’ were best represented by angular lines. Lyman (1979) found similar results: 100% of his participants
believed that ‘angry’ would be best represented by a zig-zagged shape, and 98% that ‘friendly’ would be best
represented by a curved shape. In short, many symbols exhibit degrees of iconicity, which has been suggested
as being a general property of language (Perniss, Thompson, & Vigliocco, 2010): their visual properties spon-
taneously convey associations that naturally fit better with certain meanings or sounds. It seems plausible to
suppose that, like with onomatopeias, these associations improve memorability when the symbol is paired with
a congruent concept.

These classic findings that demonstrate relationships between visual properties and meaning converge with
recent work on the association between shape, space and mathematical concepts. When thinking about
numbers, people seem to generally associate smaller numbers with the left side in space and larger numbers
with the right side as well as expansion in space (for overviews see Cipora, Patro, & Nuerk, 2018; Fischer &
Shaki, 2014; Newcombe, Levine, & Mix, 2015). Similar association seem to hold true for operation symbols in
arithmetic. Participants were faster to press a button to their right than pressing a button to their left to respond
to a presented addition symbol ‘+’ and vice versa for the subtraction symbol ‘-‘ (Pinhas, Shaki, & Fischer, 2014).

The symbols of advanced mathematics are often introduced very consciously to satisfy certain desiderata, thus
they provide a rich resource for the study of cognitive and practical advantages of notations (e.g., see Schlimm,
2018). Thus, we believe that our programmatic study opens up many avenues for future research, both in terms
of experimental work, such as studying the effects of other congruent/incongruent symbols, checking whether
children’s familiarity with ‘÷’ or ‘/’ for division makes a difference to their mathematical understanding, trying to
replicate this effect with other operations, developing production related tasks (e.g., where subjects can pick
an operation symbol from a list, or just draw their own one), as well as in terms of theoretical work, such as
extending Palmer’s (1978) classification of ‘intrinsic’ representations to cover not only properties of relations,
but also properties of the symbols used in representations, etc.

Finally, it is natural to ask whether our findings have any practical implications for mathematics teaching
and learning. An obvious suggestion would be that, all things being equal, we should follow Ladd's principle
and favour choosing symmetric symbols for commutative operations and asymmetric symbols for non-commu-
tative operations. This practice would certainly seem to be entirely feasible in many contexts. In advanced
mathematics for instance such notational choices are largely a matter of convention (there is no reason
why an introductory group theory course could not favour a symbol like '▷' to represent an arbitrary binary
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operation). Similarly, it would seem possible for teachers to introduce division with the '/' symbol rather than
'÷'. Using a notation that iconically represents the concepts of commutativity might improve students’ learning
and understanding of the concept. A possible benefit of supporting the understanding of commutativity could lie
in the faster retrieval of arithmetic facts: If a student understands commutativity and remembers ‘5 + 6 = 11’,
they also know ‘6 + 5 = 11’. These suggestions should perhaps be productively tested in a more ecologically
valid context before strong conclusions are drawn: whereas the dependent variable in our Study 2 was fluency,
this is rarely the outcome prioritised in more advanced settings, and it is unknown whether our results would
generalise from fluency outcomes to measures of conceptual understanding. Nevertheless, there seems to be
no obvious downside, and a plausible upside, to following Ladd's principle when choosing which symbols to
use when teaching mathematics.

Funding

This work was part funded by the Social Sciences and Humanities Research Council of Canada (SSHRC), Research
England, via a grant to the Centre for Mathematical Cognition, and a Loughborough University Summer Research Project
Bursary to Honali Mistry. We are grateful for this financial support.

Competing Interests

We declare that no competing interests exist.

Acknowledgments

We want to thank Fenner Tanswell for valuable discussions on the topic of mathematical notation.

Data Availability

For this article, two datasets are freely available (Wege, Batchelor, Inglis, Mistry, & Schlimm, 2020).

Supplementary Materials

The following Supplementary Materials are available (for access see Index of Supplementary Materials below):

• Via AsPredicted: The preregistration protocols for both studies.

• Via the Loughborough University Research Repository:

– Raw Data for Study 1

– All 210 trials, together with PsychoPy code to run the experiment (Study 1)

– Descriptive analyses of the effect for every individual participant and for every individual symbol (Study 1)

– Raw Data for Study 2

– All 396 problems, together with example test booklets for each of the conditions (Study 2)

Index of Supplementary Materials

Wege, T. E., Batchelor, S., Inglis, M., Mistry, H., & Schlimm, D. (2019). Supplementary materials to "Iconicity in

mathematical notation: Commutativity and symmetry" [Preregistration protocol for Study 1]. AsPredicted.

https://aspredicted.org/er78g.pdf

Wege, Batchelor, Inglis et al. 389

Journal of Numerical Cognition
2020, Vol. 6(3), 378–392
https://doi.org/10.5964/jnc.v6i3.314

https://aspredicted.org/er78g.pdf
https://www.psychopen.eu/


Wege, T. E., Batchelor, S., Inglis, M., Mistry, H., & Schlimm, D. (2017). Supplementary materials to "Iconicity in

mathematical notation: Commutativity and symmetry" [Preregistration protocol for Study 2]. AsPredicted.

https://aspredicted.org/ij4pz.pdf

Wege, T. E., Batchelor, S., Inglis, M., Mistry, H., & Schlimm, D. (2020). Supplementary materials to "Iconicity in

mathematical notation: Commutativity and symmetry" [Research data and materials]. Loughborough University

Research Repository. https://doi.org/10.17028/rd.lboro.12489731.v1

References

Allenby, R. B. J. T. (1995). Linear algebra. London, United Kingdom: Arnold.

Babbage, C. (1827). On the influence of signs in mathematical reasoning. Transactions of the Cambridge Philosophical

Society, 2, 325-377.

Cadwallader, T. C., & Cadwallader, J. V. (1990). Christine Ladd-Franklin (1847–1930). In A. N. O’Connell & N. F. Russo

(Eds.), Women in psychology: A bio-bibliographic sourcebook (pp. 220–229). New York, NY, USA: Greenwood Press.

Cajori, F. (1993). A history of mathematical notations. New York, NY, USA: Dover Publications. (Originally published as two

volumes by The Open Court Publishing Company, La Salle in 1928 and 1929)

Cipora, K., Patro, K., & Nuerk, H.-C. (2018). Situated influences on spatial-numerical associations. In T. L. Hubbard (Ed.),

Spatial biases in perception and cognition (pp. 41-59). Cambridge, United Kingdom: Cambridge University Press.

Dingemanse, M. (2012). Advances in the cross‐linguistic study of ideophones. Language and Linguistics Compass, 6,

654-672. https://doi.org/10.1002/lnc3.361

Dummit, D. S., & Foote, R. M. (2004). Abstract algebra (Vol. 3). Hoboken, NJ, USA: Wiley.

Fischer, M. H., & Shaki, S. (2014). Spatial associations in numerical cognition—From single digits to arithmetic. Quarterly

Journal of Experimental Psychology, 67, 1461-1483. https://doi.org/10.1080/17470218.2014.927515

Gallace, A., Boschin, E., & Spence, C. (2011). On the taste of “Bouba” and “Kiki”: An exploration of word–food associations

in neurologically normal participants. Cognitive Neuroscience, 2, 34-46. https://doi.org/10.1080/17588928.2010.516820

Inoue, T. (1991). Encoding activities by preschool children under orienting versus learning instructions. Japanese

Psychological Research, 33, 11-17. https://doi.org/10.4992/psycholres1954.33.11

Kirshner, D., & Awtry, T. (2004). Visual salience of algebraic transformations. Journal for Research in Mathematics

Education, 35, 224-257. https://doi.org/10.2307/30034809

Köhler, W. (1929). Gestalt Psychology. New York, NY, USA: Liveright.

Ladd, C. (1883). On the algebra of logic. In C. S. Peirce (Ed.), Studies in logic by members of the Johns Hopkins University

(pp. 17–71). Boston, MA, USA: Little, Brown, and Co.

Landy, D., & Goldstone, R. L. (2007). How abstract is symbolic thought? Journal of Experimental Psychology: Learning,

Memory, and Cognition, 33, 720-733. https://doi.org/10.1037/0278-7393.33.4.720

Iconicity in Mathematical Notation 390

Journal of Numerical Cognition
2020, Vol. 6(3), 378–392
https://doi.org/10.5964/jnc.v6i3.314

https://aspredicted.org/ij4pz.pdf
https://doi.org/10.17028/rd.lboro.12489731.v1
https://doi.org/10.1002%2Flnc3.361
https://doi.org/10.1080%2F17470218.2014.927515
https://doi.org/10.1080%2F17588928.2010.516820
https://doi.org/10.4992%2Fpsycholres1954.33.11
https://doi.org/10.2307%2F30034809
https://doi.org/10.1037%2F0278-7393.33.4.720
https://www.psychopen.eu/


Lowrey, T. M., Shrum, L. J., & Dubitsky, T. M. (2003). The relation between brand-name linguistic characteristics and brand-

name memory. Journal of Advertising, 32(3), 7-17. https://doi.org/10.1080/00913367.2003.10639137

Lyman, B. (1979). Representation of complex emotional and abstract meanings by simple forms. Perceptual and Motor

Skills, 49, 839-842. https://doi.org/10.2466/pms.1979.49.3.839

Mazur, J. (2014). Enlightening symbols: A short history of mathematical notation and its hidden powers. Princeton, NJ,

USA: Princeton University Press.

Mitchell, C. E. (1983). The non-commutativity of subtraction. School Science and Mathematics, 83, 133-139.

https://doi.org/10.1111/j.1949-8594.1983.tb10100.x

Newcombe, N. S., Levine, S. C., & Mix, K. S. (2015). Thinking about quantity: The intertwined development of spatial and

numerical cognition. Wiley Interdisciplinary Reviews: Cognitive Science, 6, 491-505. https://doi.org/10.1002/wcs.1369

Pakin, S. (2017). The Comprehensive LATEX Symbol List. Retrieved October 8, 2018 from

http://tug.ctan.org/info/symbols/comprehensive/symbols-a4.pdf

Palmer, S. E. (1978). Fundamental aspects of cognitive representation. In E. Rosch & B. Lloyd (Eds.), Cognition and

categorization (pp. 259–303). Hillsdale, NJ, USA: Lawrence Erlbaum Associates.

Peirce, C. S. (1894). What is a sign? In The Essential Peirce: Selected Philosophical Writings. Volume 2 (1893–1913).

(Peirce Edition Project, Ed., 1998). Bloomington, IN, USA: Indiana University Press.

Peirce, C. S. (1902). Logic as semiotic: The theory of signs. In Philosophical writings of Pierce (J. Buchler, Ed., pp. 98-119).

New York, NY, USA: Dover Publications.

Peirce, J., Gray, J. R., Simpson, S., MacAskill, M., Höchenberger, R., Sogo, H., . . . Lindeløv, J. K. (2019). PsychoPy2:

Experiments in behavior made easy. Behavior Research Methods, 51, 195-203.

https://doi.org/10.3758/s13428-018-01193-y

Perniss, P., Thompson, R. L., & Vigliocco, G. (2010). Iconicity as a general property of language: Evidence from spoken and

signed languages. Frontiers in Psychology, 1, Article 227. https://doi.org/10.3389/fpsyg.2010.00227

Perniss, P., & Vigliocco, G. (2014). The bridge of iconicity: From a world of experience to a world of language. Philosophical

Transactions of the Royal Society of London: Series B. Biological Sciences, 369, Article 20130300.

https://doi.org/10.1098/rstb.2013.0300

Pinhas, M., Shaki, S., & Fischer, M. H. (2014). Heed the signs: Operation signs have spatial associations. Quarterly Journal

of Experimental Psychology, 67, 1527-1540. https://doi.org/10.1080/17470218.2014.892516

Poffenberger, A. T., & Barrows, B. E. (1924). The feeling value of lines. Journal of Applied Psychology, 8, 187-205.

https://doi.org/10.1037/h0073513

Ramachandran, V. S., & Hubbard, E. M. (2001). Synaesthesia–A window into perception, thought and language. Journal of

Consciousness Studies, 8, 3-34.

Schlimm, D. (2018). On Frege’s Begriffsschrift notation for propositional logic: Design principles and trade-offs. History and

Philosophy of Logic, 39, 53-79. https://doi.org/10.1080/01445340.2017.1317429

Wege, Batchelor, Inglis et al. 391

Journal of Numerical Cognition
2020, Vol. 6(3), 378–392
https://doi.org/10.5964/jnc.v6i3.314

https://doi.org/10.1080%2F00913367.2003.10639137
https://doi.org/10.2466%2Fpms.1979.49.3.839
https://doi.org/10.1111%2Fj.1949-8594.1983.tb10100.x
https://doi.org/10.1002%2Fwcs.1369
http://tug.ctan.org/info/symbols/comprehensive/symbols-a4.pdf
https://doi.org/10.3758%2Fs13428-018-01193-y
https://doi.org/10.3389%2Ffpsyg.2010.00227
https://doi.org/10.1098%2Frstb.2013.0300
https://doi.org/10.1080%2F17470218.2014.892516
https://doi.org/10.1037%2Fh0073513
https://doi.org/10.1080%2F01445340.2017.1317429
https://www.psychopen.eu/


Schröder, E. (1890). Vorlesungen über die Algebra der Logik (Exakte Logik). (Vol. 1). Leipzig, Germany: B. G. Teubner.

Smith, J. D. (2015). Introduction to abstract algebra. New York, NY, USA: Chapman and Hall/CRC.

Weaver, J. F. (1972). The ability of first-, second-, and third-grade pupils to identify open addition and subtraction sentences

for which no solution exists within the set of whole numbers. School Science and Mathematics, 72, 679-691.

https://doi.org/10.1111/j.1949-8594.1972.tb08910.x

Iconicity in Mathematical Notation 392

Journal of Numerical Cognition
2020, Vol. 6(3), 378–392
https://doi.org/10.5964/jnc.v6i3.314

PsychOpen GOLD is a publishing service by
Leibniz Institute for Psychology (ZPID),
Trier, Germany. www.leibniz-psychology.org

https://doi.org/10.1111%2Fj.1949-8594.1972.tb08910.x
https://www.leibniz-psychology.org/
https://www.psychopen.eu/

	Iconicity in Mathematical Notation
	(Introduction)
	Ladd’s Hypothesis
	Symbolising Commutative Operations

	Study 1
	Method
	Results

	Study 2
	Method
	Results

	General Discussion
	(Additional Information)
	Funding
	Competing Interests
	Acknowledgments
	Data Availability

	Supplementary Materials
	References


