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Abstract
In Asia, some children are taught a calculation technique known as the ‘mental abacus’. Previous research indicated that mental 
abacus experts can perform extraordinary feats of mental arithmetic, but it disagrees as to whether the technique improves working 
memory. The present study extended and clarified these findings by contrasting performance from several numerical and working 
memory tasks across three groups of participants: Japanese mental abacus experts, abacus-naïve Australian undergraduates, and 
abacus-naïve Japanese undergraduates. It also investigated whether the mental representations and strategies used to process two-
digit numbers differed across the three groups. First, the results showed that the Japanese mental abacus experts only performed 
better when the numerical and working memory tasks involved arithmetic problems, suggesting domain-specific transfer rather than 
domain-general improvements to numerical processing or working memory. Second, the results suggest that the Japanese mental 
abacus experts were less reliant on decomposed magnitude representations, and used a processing strategy that is less sensitive to the 
perceptual overlap between numbers. Finally, performance was less discrepant between the Australian and Japanese abacus-naïve 
undergraduates than either group with the Japanese mental abacus experts, indicating that mental abacus training, rather than socio-
cultural differences, was responsible for the observed group differences.
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Hindu-Arabic numbers are ubiquitous in both professional settings (e.g., accountancy, epidemiology) and everyday 
contexts (e.g., calendars, monetary transactions). Children acquire this symbolic number system during their formative 
years (Gelman & Gallistel, 1978; Sarnecka, Goldman, & Slusser, 2015). However, learning is gradual (Piaget, 1952; 
Siegler, Thompson, & Opfer, 2009), and characterised by substantial variability over individuals (e.g., Dowker, 2005) and 
countries (e.g., Miura, Okamoto, Kim, Steere, & Fayol, 1993). In the Programme for International Student Assessment 
(PISA; OECD, 2016, 2019) and the Third International Mathematics and Science Study (TIMSS; Thomson, Wernert, 
O’Grady, & Rodrigues, 2016), East Asian countries like Singapore, China, and Japan have consistently occupied a top 
10 rank. Some children from those countries can add, subtract, multiply and divide sequences of very large numbers 
with extraordinary speed and accuracy (Frank & Barner, 2012), because they were taught (Stigler, 1984), and acquired 
expertise (Hatano, Miyake, & Binks, 1977) in a calculation technique known as the ‘mental abacus’ (Kojima, 1954). 
Yet, the effect of mental abacus expertise on cognition in other areas has sparked continuing debate, because some 
researchers have reported transfer to other domains (e.g., academic performance: Stigler, Chalip, & Miller, 1986; Wang, 
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2020; inductive reasoning: Jia, Zhang, Yao, Chen, & Liang, 2021; visual attention: Cheng, Ma, Hu, & Zhou, 2021) while 
others have found that its effects are limited to arithmetic tasks (e.g., Amaiwa & Hatano, 1989; Barner et al., 2016).

Motivated by this debate, the present research compared Japanese mental abacus experts with groups of numerically 
competent, abacus-naïve adults on performance in both domain-general measures of working memory and domain-spe
cific outcomes from three numerical tasks. The stimuli for those numerical tasks were designed to assess similarities 
and differences between the mental representation of two-digit Hindu-Arabic numbers and the calculation strategies 
used by the mental abacus experts and non-experts. Below, we explain why such differences in working memory and 
numerical processing were expected, following a brief outline of mental abacus training in Japan – the variable which 
distinguished the experts from all non-experts in the present research.

Mental abacus expertise usually begins with exposure to a physical abacus – a device containing beads attached to 
rods on a rectilinear frame (e.g., Kojima, 1954; Frank & Barner, 2012). A contemporary version of this device known 
as the Japanese soroban (Ifrah, 2001; Menninger, 2013) is often used by novices to represent numbers and perform 
arithmetic. Through extensive, teacher-guided practice, students learn to visualise the movement of beads on a mental 
version of the physical abacus (e.g., Hanakawa, Honda, Okada, Fukuyama, & Shibasaki, 2003). At advanced levels, 
experts prefer visualising the movement of beads when performing arithmetic over manipulations with the physical 
device.

Physical abacus exposure has remained a compulsory part of Japanese early maths education since 1926 (Shwalb, 
Sugie, & Yang, 2004). The curriculum currently defined by the Japanese Ministry of Education, Culture, Sports, Science 
and Technology specifies that students in grades three and four should “become aware of how numbers are represented 
on the abacus…and use it to calculate simple addition and subtraction” (Takahashi, Watanabe, & Yoshida, 2008, p. 7). 
Although the Japanese curriculum only stipulates rudimentary understanding of physical abacus calculations, many 
children attend extracurricular programs which offer mental abacus instruction. There, children normally spend one to 
two hours after school up to four times a week performing various abacus related activities under the supervision of 
an accredited abacus teacher. In 2003, approximately 7 million (Shwalb et al., 2004) of the 13.5 million students enrolled 
in primary and secondary schools (Statistics Bureau of Japan, 2015) studied in one of approximately 20,000 private 
abacus clubs (known as juku; Shwalb et al., 2004) distributed throughout Japan (Bellos, 2010). Approximately 6% of these 
students (Shwalb et al., 2004) also participated in accreditation exams administered by the League for Soroban Education 
in Japan for which they are ranked by mental abacus expertise (Hatta, Hirose, Ikeda, & Fukuhara, 1989). Experts also 
compete in various regional and national competitions for trophies, prizes, experience, or prestige.

Domain-General Effects of Mental Abacus Expertise: Working Memory
Previous research suggested that mental abacus experts and non-experts use different subsystems of working memory 
(Baddeley, 1986, 2003) to perform mental arithmetic (e.g., Hatano et al., 1977; Frank & Barner, 2012). The mental abacus 
experts were argued to store interim sums by imagining how each would look on a physical abacus (e.g., Stigler, 
1984). Supporting the view that visuo-spatial working memory is required to sustain these mental images, Hatano and 
Osawa (1983) found that digit span for the experts was significantly reduced when a visuo-spatial task was sandwiched 
between encoding and recall, relative to tasks involving simple factual questions (e.g., “who is the prime minister 
of Japan?”) or backward naming of three-syllable words. Because the non-experts showed the opposite pattern of 
more interference from the aural-verbal than visuo-spatial interference tasks, Hatano and Osawa concluded that digit 
memory was visuo-spatially mediated for the mental abacus experts, but verbally mediated for the non-experts. This 
difference in visuo-spatial working memory use between groups is consistent with research showing that mental abacus 
experts responded more quickly than non-experts in a word-to-picture matching task which involved mental image 
construction (Hatta & Miyazaki, 1989), and correctly recalled the position of more objects in a simple spatial span task 
(Lee, Lu, & Ko, 2007). However, Barner et al.’s (2016) extended investigation of mental abacus training found no evidence 
that it enhanced visuo-spatial working memory, because their longitudinal growth models revealed no difference in 
performance on a spatial matching task between learners and control participants over a period of three years.

Evidence about the relationship between mental abacus expertise and central executive processes is similarly 
equivocal. Using a 4-back task to assess executive function, Dong et al. (2016) found that novices who received 20 
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consecutive days of abacus instruction performed better than control participants. Also using a training design, Wang 
et al. (2015) observed greater task switching ability among mental abacus users. However, mental abacus users did not 
significantly differ from naïve participants when the central executive was assessed using a go/no-go task by Hatta 
and Miyazaki (1989) or Wang et al. (2015). Null effects were also found using tasks which involved mental updating 
(Hanakawa et al., 2003), mental rotation (Barner et al., 2016), and backward recall of digits (Lee et al., 2007) or letters 
(Hatano & Osawa, 1983) to assess the central executive.

These discrepant findings about the impact of mental abacus training on domain-general working memory processes 
might reflect two methodological limitations. First, studies comparing experts to control participants have often used 
small, elite samples – for example, Hanakawa et al. (2003) tested individuals who attained the highest mental abacus 
rank (10th dan), but only recruited 6 participants. Second, training studies which provide the other major source of 
evidence often use short to medium durations of mental abacus instruction that might not yield sufficient expertise 
(see also Barner et al., 2016). For example, Dong et al.’s (2016) experimental group included 18 participants, but they 
only received 90 minutes of instruction per day for 20 consecutive days – substantially less than any mental abacus 
expert. The present study sought to overcome these limitations in skill or statistical power by comparing large samples 
of mental abacus experts and naïve participants (at least 75 students per group) using a standardised working memory 
battery (Lewandowsky, Oberauer, Yang, & Ecker, 2010).

Domain-Specific Effects of Mental Abacus Expertise: Mental Representations and 
Strategies for Two-Digit Numbers
Rather than strengthening domain-general working memory processes, differences between the mental abacus experts 
and non-experts might arise from variability in domain-specific processes, such as their mental representations and 
strategies for two-digit numbers. Conjectures about the former have either assumed a single magnitude representation 
based on the entire sequence of printed digits (i.e., the holistic theory: Dehaene, Dupoux, & Mehler, 1990; Dehaene, 1992) 
or separate magnitude representations based on the position of each Hindu-Arabic digit (i.e., the decomposed theory: 
Poltrock & Schwartz, 1984; Nuerk, Weger, & Willmes, 2001).

Previous research on populations of adults without abacus exposure suggests that both types of mental representa
tion were constructed. Support for this view derives from the magnitude judgement task in which participants select the 
larger of two simultaneously presented numbers. Consistent with the decomposed theory, Nuerk et al. (2001) found that 
performance was faster and more accurate for unit-decade compatible stimuli (e.g., 42_57) in which the larger number 
contains the bigger digit in both the decade and unit positions (viz. 4 < 5 and 2 < 7) than for unit-decade incompatible 
stimuli (e.g., 47_62) in which the larger decade digit is in one number and the larger unit digit is in the other (viz. 4 < 
6 but 7 > 2). These sets were equated by Nuerk et al. (2001) on absolute and logarithmic distance between each number 
pair (viz. 15 in the example above) to ensure that differences between the compatible and incompatible stimuli could 
not be due to holistic magnitude. Nevertheless, their data showed evidence of the overall distance and problem size 
effects (e.g., Moyer & Landauer, 1967) that index reliance on holistic mental representations, because performance was 
slower and less accurate for problems with numbers that were closer together (the overall distance effect) or larger (the 
problem size effect). Nuerk et al.’s (2001) findings therefore implied that both types of mental representation were used.

Whether mental representations differ between the mental abacus experts and non-experts has not, to our knowl
edge, been directly investigated. From the perspective of skill development, Tzelgov, Ganor-Stern, Kallai, and Pinhas 
(2015) hypothesised that, with enough practice, multi-digit numbers might eventually be represented holistically in 
long-term memory such that, for expert arithmeticians, “what appears to us as an ordinary series of digits assumes 
a singular meaning” (Dehaene, 2011, p. 132). This view is exemplified by the lightning calculator G. P. Bidder: “The 
number 763 is represented symbolically by three figures 7-6-3; but 763 is only one quantity, one number, one idea, 
and it presents itself to my mind just as the word ‘hippopotamus’ presents the idea of one animal” (Smith, 1983, pp. 
55-56). Mental abacus experts typically spend several hours per week operating with multi-digit numbers as part of 
their extracurricular training (e.g., Stigler, 1984). This practice might have stimulated development of holistic magnitude 
representations. Consequently, the mental abacus experts should be insensitive to unit-decade compatibility and show 
larger overall distance and problem size effects.
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Inspired by the unit-decade compatibility, overall distance and problem size effects, the present research tested for 
differences in the mental representations of two-digit numbers between the mental abacus experts and non-experts 
using a magnitude judgement task. Because the mental representations used for simple magnitude judgements might 
differ from those used to solve arithmetic problems, novel variants of the unit-decade compatibility effect, detailed 
below, were constructed for a number bisection and mental addition task. These cross-task comparisons allowed us to 
evaluate whether the mental representation differences between the experts and non-experts are specific to arithmetic 
tasks.

Another domain-specific process examined in the present research was the extent to which different strategies were 
used by the experts and non-experts for the mental addition task. Numeracy curricula in Australia, like those in the 
US (e.g., Fuson & Briars, 1990), encourage decomposition algorithms for multi-digit problems (also known as ‘1010’, 
‘Separation’, ‘Tens & Units’ or ‘Full Decomposition’; Blöte, Klein, & Beishuizen, 2000; Nys & Content, 2010), because 
children are taught strategies which separately combine the unit and decade digits of the problem (e.g., 67 + 31 = 60 + 30 
and 7 + 1) before the interim sums are finally integrated (viz. 90 + 08). Other instructional methods, including the mental 
abacus (Stigler, 1984), encourage sequential algorithms for multi-digit problems (also known as ‘N10’, ‘Aggregation’, 
‘Split and Jump’ or ‘Partial Decomposition’; Klein, Beishuizen, & Treffers, 1998; Lemaire & Callies, 2009). These are more 
consistent with holistic magnitude representations because their execution requires starting with the whole augend, 
before adding on values corresponding to the decade and unit digits of the addend (e.g., 67 + 31 = 67 + 30 followed 
by 97 + 01). A subset of the items in the mental addition task, detailed below, were designed to evaluate whether 
the mental abacus experts and non-experts differed in their reliance on decomposition or sequential algorithms when 
solving arithmetic problems.

The final domain-specific process examined in the present research focussed on whether sensitivity to perceptual 
or semantic overlap between numbers for the mental addition task differed between the mental abacus experts and 
non-experts. As detailed below, this task required participants to decide whether two equations yielded the same total. 
Perceptual overlap referred to the number of shared digits between the two equations (e.g., 67+31_61+37 shares all 
digits, but 67+31_56+42 only shares one), while semantic overlap referred to the magnitude of difference between the 
equations’ totals (e.g., 67+31_85+12 differs by 1, but 67+31_85+42 differs by 29). If the mental abacus experts can rapidly 
compute a holistic representation of the sum for each equation, their mental addition performance should be insensitive 
to perceptual overlap but show a larger semantic overlap effect than the non-experts.

Overview of Experiments
Motivated by the ongoing debate about the possible effects of mental abacus expertise, the present research compared 
young mental abacus experts with numerically competent, but abacus-naïve, adults on performance in domain-general 
measures of working memory and domain-specific tests of numerical processing. The mental abacus experts (hereafter 
Abacus Experts) were all Japanese and recruited from private abacus clubs in Tokyo. Their performance was compared 
against samples of Australian university students without mental abacus training (hereafter Australian students), for 
whom the numerical and working memory tasks were originally developed and tested. As detailed below, the young 
Abacus Experts produced equivalent or better task performance than the older and more educationally mature Austral
ian students, consistent with an effect of mental abacus expertise. However, the Abacus Experts and Australian students 
also differed in socio-cultural background. Consequently, a third sample comprising Japanese university students 
without mental abacus training (hereafter Japanese students) was tested. Comparisons which differentiate the Abacus 
Experts from both the Australian and Japanese students would therefore suggest an effect of mental abacus expertise. 
Alternatively, comparisons which discriminate the Australian students from both the Japanese students and Abacus 
Experts would implicate socio-cultural factors.

The specific hypotheses for each experiment were as follows. Experiment 1 tested whether mental abacus training 
enhanced domain-general working memory by specifically augmenting visuo-spatial and central executive processes. 
The remaining experiments tested whether domain-specific mental representations and strategies for two-digit numbers 
differed between the mental abacus experts and non-experts. Such differences were inferred from performance in the 
magnitude judgement, number bisection, and mental addition tasks in Experiments 2, 3, and 4, respectively. The Abacus 
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Experts were expected to rely more on holistic than decomposed mental representations, show greater preference for 
a sequential than decomposition algorithm, and demonstrate increased sensitivity to semantic relative to perceptual 
overlap than both the Australian and Japanese students. Direct comparisons between the Australian and Japanese 
students tested whether this pattern was affected by socio-cultural factors.

General Method

Participants
Australian Students

Different samples of undergraduates from the University of Sydney, who each provided informed consent, were 
recruited for each numerical task: Ninety students (42 male; 10 left-handers; mean age = 19.1 years) participated in 
the magnitude judgement task, 102 students (39 male; 13 left-handers; mean age = 19.1 years) in the number bisection 
task, and 255 students (73 male1; 35 left-handers; mean age = 21.6 years) in the mental addition task. Participants in 
the number bisection task completed the entire working memory battery, but those in the mental addition task only 
completed the operation span and spatial short-term memory tasks due to constraints on available testing time. Students 
from the magnitude judgement and number bisection tasks participated in exchange for course credit, while students 
from the mental addition task participated during a class exercise on cognitive psychology. Based on the prevalence of 
instruction in Australia, it would be unusual for any to have received mental abacus training.2

Abacus Experts

Altogether, 79 experts participated after providing informed consent. Parental consent was also obtained for all minors 
from Soroban USA, a juku in Japan which specialises in after-school abacus instruction. Four participants were members 
of the Abacus Club at Waseda University, two were recruited from the broader student population at Waseda University, 
and the rest were students at Soroban USA.3 All students from Soroban USA were Japanese, but only those formally 
ranked on mental abacus ability, or had received more than two years of training, were selected for participation.

The 73 experts recruited from the intermediate or advanced classes of Soroban USA (38 male; 67 right-handers; mean 
age = 11.33 years) averaged 5.05 years of extracurricular abacus experience (SD = 2.10 years). Many (87.7%) also hold 
ranks from official accreditation exams: 15 are 10th dan ‘grand masters’, 30 with dan rankings from 1 to 9 are considered 
‘experts’, and 19 with a kyu rank are ‘intermediate’ users (Hatta & Miyazaki, 1989; Hishitani, 1990). The remaining 9 
participants did not report a formal rank, but 6 were awarded positions in at least one regional or national competition 
for abacus users. Participants recruited from Soroban USA were therefore highly skilled users of the mental abacus. The 
remaining 6 experts (2 male; 5 right-handers) recruited from Waseda University were also formally ranked Japanese 
individuals (range: 2nd to 10th dan), but they were older (mean age = 20.8 years) and had spent more time practising the 
mental abacus (average duration = 9.17 years, SD = 3.54 years) than participants from Soroban USA. All Abacus Experts 
received a ¥1,000 book voucher for participation.

Japanese Students

Ninety-nine Japanese undergraduates participated after providing informed consent in exchange for a ¥1,000 book 
voucher: 29 from Rikkyo University (6 male; 27 right-handers; mean age = 20.10 years), and 70 from Waseda University 
(37 male; 66 right-handers; mean age = 20.73 years). None reported having previously received any extracurricular 
mental abacus lessons.

1) Demographic information was missing for 4 participants.

2) None of the Australian students were explicitly quizzed about mental abacus exposure, because they were tested before the first author initiated this 
research with the Abacus Experts. No training was instead inferred from a lack of public awareness or opportunity to engage with mental abacus lessons 
outside Asia 10-15 years ago when the Australian students were children.

3) Data collected from 10 other mental abacus users were excluded because three were soroban teachers, and seven reported less than a year of instruction at 
Soroban USA.
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Measures of Working Memory
The memory updating, operation span and spatial short-term memory tasks were selected from the working mem
ory battery developed by Lewandowsky et al. (2010). The memory updating and operation span tasks measure 
central executive working memory, while the spatial memory task assesses visuo-spatial working memory (e.g., 
Ecker, Lewandowsky, Oberauer, & Chee, 2010). Details about the stimuli and scoring for each task can be found in 
Lewandowsky et al. (2010).

The two Japanese samples completed variants of the three working memory tasks. First, all instructions were 
translated from English to Japanese. Second, each letter in the operation span task was replaced with one of 46 hiragana 
characters used in the Japanese writing system, because formal exposure to the English alphabet only commences in 
Grade 4 for Japanese children (approximately 9 years of age). Participants responded using a standard US keyboard (see 
Figure 1) with labels reflecting the order presented in charts shown during early education (Mabuchi, 1993). None of 
the hiragana sequences spelled proper Japanese words, and different keys were labelled correct and incorrect for the 
interleaved maths verification problems used to assess processing in the operation span task. Following Lewandowsky 
et al. (2010), performance in the operation span task was defined by recall of the stored sequence of letters, while 
performance in the secondary operation span processing task was defined by maths verification accuracy.

Figure 1

The Keyboard Used by the Abacus Experts and Japanese Students for the Operation Span Task

Note. Hiragana labels were attached to each key using coloured stickers.

Procedure
The DMDX display software (Forster & Forster, 2003) was used to control stimulus presentation and record reaction 
time (RT) and errors for the three numerical tasks. Numbers were presented in black monospace font (Consolas) on a 
white background with each digit spanning a height of 12 mm.

Stimulus presentation and response detection for all three working memory tasks was controlled using MATLAB 
8.1.0.604 (R2013a) and Psychtoolbox Version 3.0.9 with code from Lewandowsky et al. (2010). For the Australian 
students, the memory updating, operation span and spatial memory tasks were delivered in that order following the 
number bisection or mental addition tasks. For the Abacus Experts, tasks were subdivided into sessions based on 
equipment and participant availability. The Japanese students experienced the following sequence of tasks: magnitude 
judgement, mental addition, memory updating, operation span, spatial memory, and number bisection.

Model Specification for the Numerical Tasks
RT and accuracy from the magnitude judgement, number bisection and mental addition tasks were separately analysed 
using generalised linear mixed-effect models (GLMMs) based on version 1.1-21 from the lme4 package (Bates, Mächler, 
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Bolker, & Walker, 2015) in the R program for statistical computing (R Core Team, 2015). All analyses treated participants 
and stimuli as crossed random factors, and statistically controlled for the effects of trial-level predictors such as RT 
of the previous response and spatial position of the larger number (e.g., Andrews & Lo, 2012, 2013). These extraneous 
trial-level effects on performance in the magnitude judgement, number bisection, and mental addition tasks are sum
marised in Appendix A. By accounting for structural dependencies in the data and controlling for systematic relations 
with participant and item covariates (e.g., overall distance between numbers for each problem), GLMMs offer greater 
power to detect treatment effects on the mean for each condition than either analysis of variance or regression (e.g., 
Baayen, Davidson, & Bates, 2008; Bolker et al., 2009). In line with previous research, GLMMs of RT used an Inverse 
Gaussian distribution as a model of skewed waiting time with an identity link function (e.g., Lo & Andrews, 2015), 
while GLMMs of accuracy used a binomial distribution with a logit link function (e.g., Jaeger, 2008). Models estimated 
random slopes for all effects of interest as recommended by Barr, Levy, Scheepers, and Tily (2013), and all continuous 
predictors were standardised prior to analysis. Normalised sum contrasts (Venables & Ripley, 2002) were specified to 
separately compare the Abacus Experts with the Australian and Japanese students in one set of GLMMs, while another 
set separately compared the Australian students with the Abacus Experts and Japanese students. The degrees of freedom 
are currently unknown for the t-statistic in GLMMs (e.g., Kliegl, Masson, & Richter, 2010), but the asymptotic p-values 
reported below should be accurate for datasets with many hundreds or thousands of observations like ours (Baayen et 
al., 2008). The significance criterion for the group interaction contrasts was adjusted to .05/3 = .017 using the Bonferroni 
procedure to correct for multiple comparisons.

Experiment 1: Working Memory Tasks
The goal of Experiment 1 was to evaluate whether central executive and visuo-spatial working memory differed 
according to group using a larger sample of mental abacus experts than previous research (cf. Hanakawa et al., 2003; 
Dong et al., 2016). We also explored whether the Abacus Experts’ performance depended more on visuo-spatial working 
memory by testing for group differences in the strength of relationship between the working memory measures.

Method
Participants

Altogether, 102 Australian students, 79 Abacus Experts, and 99 Japanese students participated in all three working 
memory tasks. Another 255 Australian students participated in the operation span and spatial memory tasks, but not the 
memory updating task.

Results
Nine Australian and one Japanese student scoring more than 4 SD below the mean on the operation span processing 
task were excluded from the analyses. Following Lewandowsky et al. (2010), one Abacus Expert and another Australian 
student was eliminated because they scored more than 3 SD below the mean on more than two tasks. Average 
performance for each task is presented in Figure 2 based on the remaining 347 Australian students, 78 Abacus Experts, 
and 98 Japanese students. Data were missing for eight Australian students on the spatial memory task, and one Abacus 
Expert on the memory updating task.

Within each task, performance was examined using independent samples t-tests. For the memory updating task, 
scores were significantly higher for the Abacus Experts than either the Australian, t(176) = -6.94, p < .001, Cohen’s d = 
-1.05, or Japanese students, t(173) = -2.78, p = .01, Cohen’s d = -0.42, and significantly lower for the Australian than 
Japanese students, t(197) = 4.92, p < .001, Cohen’s d = 0.70. For the operation span task, the Japanese students performed 
significantly better than the Abacus Experts, t(174) = 4.66, p < .001, Cohen’s d = 0.71, or the Australian students, t(443) = 
15.18, p < .001, Cohen’s d = -1.74, while the Abacus Experts significantly outperformed the Australian students, t(423) = 
-10.49, p < .001, Cohen’s d = -1.31. For the spatial memory task, recall did not significantly differ between the Australian 
and Japanese students, t(435) = 1.09, p = .28, Cohen’s d = 0.12, the Australian students and Abacus Experts, t(415) = 1.64, 
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p = .10, Cohen’s d = 0.21, or the Japanese students and Abacus Experts, t(174) = 2.20, p = .03, Cohen’s d = 0.33, using the 
Bonferroni-adjusted criterion of .017.4

Figure 2

Score for Each Working Memory Task According to Group

Note. Performance in the operation span task was defined by the proportion of letters recalled, while performance in the operation span (processing 
task) was defined by maths verification accuracy. Error bars represent 1 SD above and below each sample mean.
'p < .05. *p < .017. **p < .001.

The correlations between tasks for each group are presented in Table 1. All were significant except for the relationship 
between spatial memory and operation span among the Japanese students. Comparisons using Fishers’ z-tests revealed 
significantly weaker correlations for the Japanese students than either the Australian students, |z| > 3.06, all p < .01, 
or Abacus Experts, |z| > 2.91, all p < .01. The correlation between memory updating and spatial memory was not 
significantly different between the Australian and Japanese students, z = -1.22, p = .22, nor did any of the correlations 
between tasks differ significantly between the Australian students and Abacus Experts, |z| < 1.79, all p > .07.

Table 1

Correlations Between the Working Memory Tasks for Each Participant Group

Task Memory Updating Operation Span

Australian Students
Operation Span 0.60**

Spatial Short-Term Memory 0.42** 0.36**

Abacus Experts
Operation Span 0.59**

Spatial Short-Term Memory 0.62** 0.46**

Japanese Students
Operation Span 0.22*

Spatial Short-Term Memory 0.27* 0.02

*p < .05. **p < .001.

4) The proportion of male and female participants was approximately equal for the Abacus Experts (51.3%) and Japanese students (42.9%), but there was 
roughly twice as many female participants among the Australian students (on average, 66.3%). Sex differences in working memory performance have 
previously been reported (e.g., Harness, Jacot, Scherf, White, & Warnick, 2008). However, the pattern of group differences for the male and female participants 
within each working memory task was the same as for the combined sample, and none of the comparisons involving group interacted significantly with sex 
(all p > .05). The working memory results for the full sample therefore appear to hold for both male and female participants.

The Effects of Mental Abacus Expertise 96

Journal of Numerical Cognition
2022, Vol. 8(1), 89–122
https://doi.org/10.5964/jnc.8073

https://www.psychopen.eu/


Discussion
The benefits of mental abacus expertise were confined to the memory updating task which requires mental calculation 
with Hindu-Arabic numbers. Although single-digit equations were interleaved in the operation span task (e.g., 4 + 2 = 7, 
true or false?), verification could be achieved by checking the retrieved solution from long-term memory (e.g., Ashcraft 
& Stazyk, 1981). These task-specific factors complicate inferences about the effect of mental abacus expertise on central 
executive working memory. Crucially, the Abacus Experts did not perform better than either abacus-naïve group in 
the spatial memory task. The correlations between measures were also significantly weaker for the Japanese students, 
rather than stronger for the Abacus Experts than both non-expert groups. One interpretation for these results is that 
mental abacus expertise does not augment visuo-spatial working memory nor increase the extent to which this resource 
is used for other tasks (e.g., Barner et al., 2016). Alternatively, the lack of group differences might reflect the ceiling 
effect observed in the operation span and spatial memory tasks for both Japanese samples. Distinguishing between these 
accounts may require the operation span and spatial memory task difficulty to be adjusted in future experiments.

Experiment 2: Magnitude Judgement Task
The overarching goal of the remaining experiments was to explore whether mental abacus experts and non-experts 
differed in both mental representations and strategies used for two-digit numbers. The magnitude judgement task of 
Experiment 2 tested whether the groups differed in reliance on holistic or decomposed magnitude representations 
for two-digit Hindu-Arabic numbers using the unit-decade compatibility, overall distance, and problem size effects 
introduced earlier.

Method
Participants

Altogether, 90 Australian students, 79 Abacus Experts, and 99 Japanese students from the previous experiment participa
ted.

Design and Stimuli

The critical between-decade stimuli in the magnitude judgement task comprised 240 pairs of two-digit numbers con
structed by Nuerk et al. (2001). Half of these pairs were unit-decade compatible (e.g., 42_57); the rest were unit-decade 
incompatible (e.g., 47_62). Unit and decade distance between each pair of numbers was orthogonally manipulated over 
each of the unit-decade compatible and incompatible conditions (small: 1-3; large: 4-8). As described in Nuerk et al. 
(2001), overall distance between each pair of numbers, problem size and unit distance were all matched absolutely 
and logarithmically between the two conditions, |t(238)| < 1.07, p > .29. Decade distance was significantly larger for 
unit-decade incompatible items, |t(238)| > 2.34, p < .02, because each pair of numbers crossed an additional decade 
boundary to match overall distance with the unit-decade compatible items (Nuerk, Weger, & Willmes, 2004). Therefore, 
following Ganor-Stern, Pinhas, and Tzelgov (2009, Experiment 2), 60 filler trials with numbers containing the same 
decade digit (e.g., 32_36) were intermixed to prevent adoption of task-specific strategies based on the decade digits of 
each pair.5

Procedure

Each trial in the magnitude judgement task comprised an initial display of two fixation markers for 300 ms on the left 
and right sides of the screen horizontally separated by 10 cm of empty space that was immediately replaced by two 
numbers for 2000 ms or until response. Number pairs were subdivided into three lists with the larger number appearing 

5) The Australian students and Abacus Experts completed twice as many trials as the Japanese students, once with the larger number on the left and once with 
the larger number on the right, across three blocks varying in how each number was presented (cf. Ganor-Stern et al., 2009). This latter manipulation was not 
administered to the Japanese students, so only the results for simultaneously presented number pairs are reported here.
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equally often on the left and right sides of the screen. Participants completed 18 practice trials followed by the 300 
experimental items presented in an individually randomised order. Instructions at the beginning of the task specified 
that participants should press a key with their left or right hand matching whichever side of the screen contained the 
larger number.

Results
Data was missing for one Abacus Expert due to a computer recording error, and one Japanese student due to experi
menter error. Two Australian students and one Abacus Expert with unusually high error rates exceeding 15% were also 
excluded. RTs faster than 100 ms or exceeding 2000 ms were excluded from the analyses for the remaining 88 Australian 
students, 77 Abacus Experts and 98 Japanese students (0.47%, 0.32%, and 0.01% of each group’s total, respectively).

Figure 3 summarises the mean RTs and error proportions for each group according to unit-decade compatibility. 
Averaged over group, a unit-decade compatibility effect was observed, because incompatible trials yielded significantly 
longer RT, t = 5.72, p < .001, RT estimate = 18 ms, and lower accuracy, z = 5.95, p < .001, log-odds estimate = 0.73, than 
compatible trials. The GLMMs also revealed a significantly weaker unit-decade compatibility effect on both RT, t = 3.87, 
p < .001, RT estimate = 16 ms, and accuracy, z = 2.59, p = .01, log-odds estimate = 0.52, for problems with a smaller 
distance between the unit digits. They also showed that performance was affected by overall distance and problem size, 
because problems with a larger difference between numbers, t = -24.49, p < .001, RT estimate = -41 ms; z = -15.66, p 
< .001, log-odds estimate = -0.98, or problems with larger numbers, t = -3.76, p < .001, RT estimate = -6 ms; z = 1.78, p 
= .08, log-odds estimate = 0.09, yielded significantly faster RT or higher accuracy.

Figure 3

Mean RT and Error for Each Group and Level of Unit-Decade Compatibility in the Magnitude Judgement Task

Note. Error bars represent 95% confidence intervals estimated from GLMMs based purely on fixed effect uncertainty.

Averaged over stimuli, the GLMMs revealed no significant difference in accuracy, but significantly faster RT for the 
Japanese students than either the Abacus Experts, t = -11.07, p < .001, RT estimate = -89 ms; z = -2.11, p = .04, log-odds 
estimate = -0.33, or Australian students, t = -11.85, p < .001, RT estimate = 91 ms; z = 1.57, p = .12, log-odds estimate = 
-0.24. Neither RT, t = 0.33, p = .74, RT estimate = 3 ms, nor accuracy, z = -0.58, p = .56, log-odds estimate = -0.09, differed 
significantly between the Abacus Experts and Australian students.

The group comparisons for each effect are presented in Figure 4, which summarises the descriptive estimates and 
test statistics from the GLMMs in the graphical and tabular components, respectively. Most of these group comparisons 
were not significant. The only exception was a significantly larger overall distance effect on RT for the Australian stu
dents than either the Abacus Experts or Japanese students. The unit-decade compatibility effect on accuracy was smaller 
for the Abacus Experts than Australian students, but this comparison is not significant using the Bonferroni-adjusted 
criterion of .017.
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Figure 4

The GLMM Group Comparisons for Each Effect in the Magnitude Judgement Task

Note. Error bars represent 95% confidence intervals for each comparison. AS = Australian students; AE = Abacus Experts; JS = Japanese students.
'p < .05. *p < .017. **p < .001.

Discussion
Data from the magnitude judgement task yielded three major findings. First, the unit-decade compatibility effect was 
successfully replicated, implicating the use of decomposed magnitude representations in all three samples. Second, 
performance was comparable between all three groups: the Japanese students’ faster RT might be due to those partici
pants having completed fewer trials, given the significant positive association between task length and RTs reported in 
Appendix A. Finally, the unit-decade compatibility effect on accuracy was marginally smaller for the Abacus Experts 
than Australian students. Although this result suggests greater reliance on holistic magnitude representations by the 
Abacus Experts, a larger overall distance effect was not observed as expected from Tzelgov et al.’s (2015) hypothesis. 
Instead, the overall distance effect was significantly larger for the Australian students than either Japanese sample. 
Limited and somewhat contradictory evidence was therefore obtained from the magnitude judgement task about the 
effect of mental abacus expertise on mental representations of two-digit numbers.

Experiment 3: Number Bisection Task
Experiment 3 investigated whether clearer evidence of group differences would emerge in a number bisection task 
that required mental calculation to achieve accurate performance. Participants were shown three two-digit numbers 
and instructed to judge whether the medial number was the midpoint of the two outer numbers. Decomposed mental 
representations were tested using the outer numbers to define the unit-decade compatibility effect. Decomposition was 
also tested using a novel variant – the part-whole congruency effect – based on response consistency between the entire 
stimulus and subset of unit digits. For example, the stimulus 45_67_89 is part-whole congruent, because decisions based 
on the entire stimulus or unit digits both yield the same response (i.e., 67 correctly bisects the whole numbers 45 and 89, 
and 7 also correctly bisects the unit digits 5 and 9). Conversely, the stimulus 42_58_74 is part-whole incongruent, because 
58 correctly bisects 42 and 74, but the unit digit 8 is not the midpoint of 2 and 4. Converging evidence for differences 
in reliance on holistic mental representations was again assessed using the overall distance and problem size effects. 
Two indices of overall distance were defined for this task: the difference between each pair of outer numbers (hereafter 
Outer Numbers), and the difference between each medial number and true arithmetic midpoint (hereafter Medial to 
Midpoint). If the Abacus Experts relied more on holistic magnitude representations, they should be less sensitive to 
unit-decade compatibility and part-whole congruency, and more sensitive to overall distance and problem size than 
either the Australian or Japanese students.
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Method
Participants

Altogether, 102 Australian students, 79 Abacus Experts, and 99 Japanese students from Experiment 1 participated.

Design and Stimuli

Sixty-four pairs of two-digit numbers were selected as the outer numbers for the number bisection task.6 Half were 
unit-decade compatible (e.g., 42_XX_74), and the rest were unit-decade incompatible (e.g., 45_XX_71). Overall distance, 
problem size and unit distance between each pair of outer numbers were matched both absolutely and logarithmically 
between these two conditions (all p > .20; see Appendix B for the means). Medial numbers were then chosen to 
correctly or incorrectly bisect the interval defined by each outer number pair (see Appendix B for example stimuli). 
For the correctly bisected problems, stimuli were part-whole congruent (e.g., 45_67_89) if the medial number’s unit digit 
matched the midpoint of the outer number’s unit digits (viz. 7 correctly bisects 5 and 9, and 67 correctly bisects 45 and 
89). Stimuli were otherwise part-whole incongruent (e.g., 42_58_74) if the medial number’s unit digit deviated from the 
midpoint of the unit digits from both outer numbers (viz. 8 incorrectly bisects 2 and 4, but 58 correctly bisects 42 and 
74). For the incorrectly bisected problems, this criterion was inverted, such that stimuli were part-whole incongruent 
(e.g., 42_53_74) if the medial number’s unit digit coincided with the midpoint of the outer numbers’ unit digits (viz. 
3 correctly bisects 2 and 4, but 53 incorrectly bisects 42 and 74). Stimuli were otherwise part-whole congruent (e.g., 
45_76_89) if the medial number’s unit digit deviated from the midpoint of the unit digits from both outer numbers (viz. 6 
incorrectly bisects 5 and 9, and 76 incorrectly bisects 45 and 89).

The incorrectly bisected problems were further subdivided according to the discrepancy between the medial number 
and true midpoint. Half of the medial numbers were close to the arithmetic middle (distance of 1-3 for the congruent 
trials; distance of 5 for the incongruent trials; both containing the same decade digit as the midpoint), and half were 
far from the arithmetic middle (distance of 4-8 for the congruent trials; distance of 5 or 15 for the incongruent trials; 
both containing different decade digits from the midpoint). Approximately half of these medial numbers fell above or 
below the arithmetic midpoint. Heeding Nuerk, Geppert, van Herten, and Willmes’ (2002) suggestions, all pairs of outer 
numbers were bisectable (i.e., parity of the outer numbers was homogenous), all four digits comprising each pair of 
outer numbers were unique, none of the outer numbers were decade numbers (e.g., 70), and none of the numbers in each 
problem fell onto the same row or column in the standard 12 x 12 multiplication tables.

Procedure

The displays were identical to the magnitude judgement task except that three fixation markers were shown in the 
first display, an empty space of 3.5 cm separated each of the outer numbers from the medial number, and all three 
numbers were displayed for 10,000 ms or until response. Each stimulus was randomly sampled without replacement by 
the DMDX software from four lists which contained an equal number of correctly and incorrectly bisected trials. Like 
the magnitude judgement task, the largest number appeared equally often on the left and right sides of the screen; 18 
practice trials preceded the critical items; and the order of problems was individually randomised for each participant 
without repetition. Before the practice trials, participants were instructed to press one key with their right hand if the 
medial number correctly bisected the outer numbers, and another key with their left hand if the outer numbers were 
incorrectly bisected by the centrally presented medial number. The critical trials were randomly separated into blocks 
which had a self-paced break imposed between them.

6) The Australian students and Abacus Experts were presented with an additional 128 pairs of outer numbers matched on stimulus characteristics with the 
critical items that were not presented to the Japanese students because of time constraints. These pairs were randomly distributed to yield four blocks of 48 
trials for the Australian students and Abacus Experts, while the critical items were partitioned to yield two blocks of 32 trials for the Japanese students. The 
reduced subset of items produced very similar outcomes to the complete set, so only the results for these common stimuli are reported.
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Results
Data were missing for two Abacus Experts due to a computer recording error, and one Japanese student due to 
experimenter error. One Abacus Expert, two Australian, and three Japanese students who responded to fewer than 90% 
of problems were excluded from the analyses. Another four Abacus Experts, 25 Australian students, and 11 Japanese 
students with more than 30% incorrect responses were also excluded.7 RTs below 200 ms or exceeding 10,000 ms were 
removed for the remaining 75 Australians, 72 Abacus Experts and 84 Japanese students (1.58%, 0.78% and 1.58% of each 
group’s total, respectively).

Figure 5 separately presents the mean RTs and error proportions for the correctly and incorrectly bisected problems 
according to group, unit-decade compatibility, and part-whole congruency. Averaged over group, performance was 
affected by unit-decade compatibility and part-whole congruency, because the GLMMs revealed significantly longer RT 
and lower accuracy for the incompatible than compatible stimuli (correctly bisected: t = 6.65, p < .001, RT estimate = 309 
ms; z = 2.03, p = .04, log-odds estimate = 0.19; incorrectly bisected: t = 8.32, p < .001, RT estimate = 456 ms; z = 2.43, 
p = .02, log-odds estimate = 0.29), and the incongruent than congruent stimuli (correctly bisected: t = 2.59, p = .01, RT 
estimate = 115 ms; z = 3.82, p < .001, log-odds estimate = 0.37; incorrectly bisected: t = 3.72, p < .001, RT estimate = 201 
ms; z = 8.10, p < .001, log-odds estimate = 1.00). As in the magnitude judgment task, this unit-decade compatibility effect 
was significantly weaker for problems with a smaller distance between the unit digits (correctly bisected: t = 4.13, p 
< .001, RT estimate = 104 ms; z = 1.34, p = .18, log-odds estimate = 0.08; incorrectly bisected: t = 2.86, p = .01, RT estimate 
= 92 ms; z = 0.72, p = .47, log-odds estimate = 0.06). Average performance also correlated with overall distance, because 
stimuli with a greater difference between the outer numbers (correctly bisected: t = 9.12, p < .001, RT estimate = 217 ms; 
z = 1.46, p = .15, log-odds estimate = 0.07; incorrectly bisected: t = 9.51, p < .001, RT estimate = 285 ms; z = 2.55, p = .01, 
log-odds estimate = 0.16), or had a small than large difference between the medial number and true midpoint (t = -6.62, p 
< .001, RT estimate = -195 ms; z = -3.09, p = .002, log-odds estimate = -0.29), were associated with significantly longer RT 
or lower accuracy. The problem size effect on average performance was less consistently observed, because stimuli with 
larger numbers yielded significantly longer RT for the correctly bisected (t = 4.68, p < .001, RT estimate = 97 ms; z = 1.12, 
p = .26, log-odds estimate = 0.05), but not the incorrectly bisected (t = 0.50, p = .62, RT estimate = 13 ms; z = -1.55, p = .12, 
log-odds estimate = -0.10), problems.

In contrast to the magnitude judgement task, the GLMMs revealed that for both the correctly and incorrectly 
bisected problems, the Abacus Experts produced significantly faster RT and fewer errors than either the Japanese 
(correctly bisected: t = 15.29, p < .001, RT estimate = 1518 ms; z = 7.14, p < .001, log-odds estimate = 0.96; incorrectly 
bisected: t = 9.17, p < .001, RT estimate = 874 ms; z = 4.95, p < .001, log-odds estimate = 0.87) or Australian students 
(correctly bisected: t = 16.21, p < .001, RT estimate = 1670 ms; z = 5.73, p < .001, log-odds estimate = 0.80; incorrectly 
bisected: t = 10.95, p < .001, RT estimate = 1097 ms; z = 7.44, p < .001, log-odds estimate = 1.31). Neither RT, t = -1.46, 
p = .15, RT estimate = -151 ms, nor accuracy, z = 1.34, p = .18, log-odds estimate = 0.16, differed significantly between 
the Japanese and Australian students for the correctly bisected problems. However, the incorrectly bisected problems 
yielded slower, t = -2.22, p = .03, RT estimate = -223 ms, and significantly less accurate responses, z = -2.92, p = .004, 
log-odds estimate = -0.44, for the Australian than Japanese students.

7) This overall accuracy criterion was more lenient than the 75% cut-off used by Nuerk et al. (2002). However, the present experiment was more difficult due to 
the removal of both non-bisectable and multiplicative trials.
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Figure 5

Mean RT and Error for Each Group, Level of Unit-Decade Compatibility and Part-Whole Congruency in the Number Bisection Task Separately Calculated 
for the Correctly (Top Row) and Incorrectly (Bottom Row) Bisected Problems

Note. The means for the compatible and incompatible trials were averaged over part-whole congruency. The means for the congruent and incongruent 
trials were averaged over unit-decade compatibility. Error bars represent 95% confidence intervals estimated from GLMMs based purely on fixed effect 
uncertainty.

The descriptive estimates and test statistics from the group comparisons for each effect are presented in Figure 6. 
Unlike the magnitude judgement task, many comparisons were significant, and they discriminated the Abacus Experts 
from the Australian and Japanese students by showing that most effects (i.e., unit-decade compatibility, part-whole 
congruency, overall distance, and problem size) were smaller among the Abacus Experts than either student group. 
None of these significant group differences revealed a larger effect for the Abacus Experts than either the Australian 
or Japanese students. Relatively few differences were observed between the Australian and Japanese students. Although 
the Japanese students produced a significantly larger overall distance effect on RT for the correctly and incorrectly 
bisected problems, their part-whole congruency effect on RT for the correctly bisected problems was significantly 
weaker than the Australian students’.
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Figure 6

The GLMM Group Comparisons for Each Effect in the Number Bisection Task

Note. Error bars represent 95% confidence intervals for each comparison. AS = Australian students; AE = Abacus Experts; JS = Japanese students.
'p < .05. *p < .017. **p < .001.

Discussion
Contrary to Experiment 2, the number bisection task revealed strong benefits of mental abacus expertise on overall 
performance: for both the correctly and incorrectly bisected problems, the Abacus Experts were faster and more 
accurate than either non-expert group. These gains in overall performance were accompanied by weaker reliance 
on decomposed magnitude representations, indexed by the Abacus Experts’ smaller unit-decade compatibility and 
part-whole congruency effects. Mental abacus expertise, rather than socio-cultural factors, seemed to drive both the 
Abacus Experts’ superior performance and weaker reliance on decomposed representations, because the Australian 
and Japanese student differences were descriptively smaller and statistically fewer. Yet, as elaborated in the General 
Discussion, socio-cultural factors might explain the more accurate responses and larger overall distance effect on RT 
for the incorrectly bisected problems by the Japanese than Australian students. Like the magnitude judgement task, this 
experiment provided no clear evidence of greater reliance on holistic magnitude representations by the Abacus Experts: 
both the overall distance and problem size effects were generally weaker than the other two groups.

Experiment 4: Mental Addition Task
Introducing problems that required mental calculation revealed significant benefits of mental abacus expertise. Al
though the Abacus Experts were substantially younger and less educationally mature, they solved the bisection prob
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lems more quickly, and at least as accurately, than either the Australian or Japanese students. Both the unit-decade 
compatibility and part-whole congruency effect comparisons converged in suggesting that mental abacus experts were 
less reliant on decomposed mental representations than the abacus-naïve adults. However, there was no evidence to 
suggest that the mental abacus experts relied more on holistic magnitude representations.

Mental calculation was also required in the mental addition task of Experiment 4. This task presented pairs of 
reference and target equations, each containing two-digit operands, and participants were asked to judge whether each 
pair yielded the same or different totals. Group differences in decomposed mental representations were tested using the 
part-whole congruency effect based on response consistency between the entire equations and their unit digit subsets. 
For example, the pair 67+31_85+42 is part-whole congruent (hereafter the Different Unrelated condition), because the 
response ‘different’ is supported by both the equations’ totals (viz. 98 and 127), and the sum of their unit digits 
(viz. 8 and 7). Conversely, the pair 67+31_45+23 is part-whole incongruent (hereafter the Same Unit Total condition), 
because the two equations yield different totals (viz. 98 and 68), but their unit digit partial sums are the same (viz. 8). 
Group differences in holistic mental representations were tested using the overall distance effect by manipulating the 
difference in total between the reference and target equations: in the Close condition, totals only differed by 1 (e.g., 
67+31_85+12), substantially less than the average difference of 26.35 between totals in the Different Unrelated condition 
(e.g., 67+31_85+42). If the Abacus Experts rely more on holistic mental representations, they should produce a smaller 
difference in performance between the incongruent and congruent stimuli, but a larger discrepancy between the Close 
and Different Unrelated conditions, than either the Australian or Japanese students.

Additional conditions were constructed to explore whether the mental abacus experts and non-experts use different 
calculation strategies to solve mental arithmetic problems. Group differences in calculation strategies were assessed 
using the algorithms effect based on the same total conditions in which the interim sums derived for the reference 
equation were the operands shown in the target equation. In the Decomposition condition, target equation operands 
were the reference equation interim sums derived using a decomposition algorithm (e.g., 67+31_90+08), while the 
Sequential condition used the interim sums from a sequential algorithm (e.g., 67+31_97+01), and the Same Unrelated 
condition used numbers consistent with neither of these algorithms (e.g., 67+31_56+42). Faster and more accurate 
judgements for the Decomposition condition were expected for the Australian and Japanese students, but the Sequential 
condition for the Abacus Experts, because the target equation operands were the interim sums recently computed 
during mental addition of the reference based on the algorithm usually taught to each group by their arithmetic teachers 
(e.g., Stigler, 1984).

A final subset of conditions investigated whether different processing strategies were used by the mental abacus 
experts and non-experts based on perceptual or semantic overlap. Group differences in the perceptual overlap effect were 
tested by varying the number and position of shared digits between the reference and target equations. Conditions 
in which the target equation operands were Identical to its reference (e.g., 67+31_67+31), Legally Transposed within 
place-value (e.g., 67+31_61+37), or Illegally Transposed between place-values (e.g., 67+31_63+71) were compared with 
the Same Unrelated condition (e.g., 67+31_56+42) and the Different Unrelated condition (e.g., 67+31_85+42) in which 
the target shared few if any digits with its reference. These conditions were used to separately evaluate the perceptual 
overlap effect for the Same and Different Total problems, while the overall distance effect was used to estimate the 
influence of semantic overlap on performance. If the processing strategy used by the Abacus Experts is less sensitive 
to perceptual overlap and more sensitive to semantic overlap, they should produce a smaller difference in performance 
between the Identical, Legally Transposed, and Same Unrelated conditions for the Same Total problems, as well as a 
smaller difference between the Illegally Transposed and Different Unrelated conditions for the Different Total problems, 
than either the Australian or Japanese students. Conversely, a larger difference in performance was expected for the 
Abacus Experts between the Close and Different Unrelated conditions.

Method
Participants

Altogether, 255 Australian students, 79 Abacus Experts, and 99 Japanese students from Experiment 1 participated in the 
mental addition task.
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Design and Stimuli

The reference equations for the mental addition task comprised 120 pairs of two-digit operands. Half of these addition 
problems required a carry from the unit position (hereafter Unit Carry problems); the rest did not involve any carry 
operations (hereafter No Carry problems). All reference equations produced a two-digit sum, which excluded decade 
numbers (e.g., 40) or repeated digits (e.g., 77) in either the operands or solution. Each digit across both operands was 
unique. Neither the operands’ sum, M = 86, SD = 11.29; M = 83.1, SD = 10.13, nor average problem size, M = 43, SD = 5.64; 
M = 41.55, SD = 5.06, differed significantly between the No Carry and Unit Carry problems, t(118) = 1.48, p = .14; t(118) 
= 1.48, p = .14. Nine target equations were constructed for each reference equation, one for each condition. As illustrated 
by the examples in Table 2, five were Same Total problems, because each reference and target equation pair yielded the 
same total for the Identical, Legally Transposed, Decomposition, Sequential, and Same Unrelated conditions. The rest 
were Different Total problems for the Illegally Transposed, Close, Same Unit Total, and Different Unrelated conditions.8 

Comparisons between these Same and Different Total problem conditions yielded the following effects used to infer 
which mental representations and strategies affect task performance.

Table 2

Examples of the Reference and Target Equations in the Mental Addition Task

Target

Reference

No Carry Unit Carry

(67 + 31) (69 + 23)

Same Total
Identical 67 + 31 69 + 23

Legally Transposed 61 + 37 63 + 29

Decomposition 90 + 08 80 + 12

Sequential 97 + 01 89 + 03

Same Unrelated 56 + 42 58 + 34

Different Total
Illegally Transposed 63 + 71 62 + 93

Close 85 + 12 78 + 13

Same Unit Total 45 + 23 48 + 24

Different Unrelated 85 + 42 85 + 74

Within the Different Total problems, two conditions assessed the part-whole congruency effect. Target equations from 
the Different Unrelated condition were defined as part-whole congruent, because the unit digits also yield a different 
total from the reference equations’ unit digits (e.g., 67 + 31 ≠ 85 + 42, and 7 + 1 ≠ 5 + 2). Conversely, target equations 
from the Same Unit Total condition were defined as part-whole incongruent, because these Different Total problems had 
unit digits that yield the same total as the reference equations’ unit digits (e.g., 67 + 31 ≠ 45 + 23, but 7 + 1 = 5 + 3).

Within the Same Total items, two conditions assessed the perceptual overlap effect: in the Identical condition, all 
digits from the reference equation were repeated in the same position, while in the Legally Transposed condition, 
both digits occupying the unit positions from the reference equation were interchanged. Another two sets of Same 
Total items assessed the algorithms effect. In the Decomposition condition, target equation operands were interim sums 
created by separately adding pairs of decade and unit digits together from the reference equation. In the Sequential 
condition, target equation operands were intermediary steps in the sequential algorithm described earlier: the first 

8) Additional filler Different Total problems were created for two reasons. First, to equate the number of Same and Different Total conditions, and second to 
control for the appearance of decade (e.g., 70) and single-digit numbers (e.g., 01) in the Same Total problems. These filler problems were created using the 
same algorithm as the Sequential condition, but the decade digit from one of the operands in the reference equation was incorrectly added to the unit position 
of the other operand to yield different totals (e.g., 67+31 ≠ 70+01).
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operand was constructed by incrementing the augend by the addend’s decade value, while the other operand was the 
residual unit digit of the addend. Finally, target equation operands in the Same Unrelated condition served as a baseline 
for the Same Total problems to assess the perceptual overlap and algorithms effects: they comprised numbers that 
excluded interim sums derived using either a decomposition or sequential algorithm and contained fewer than two of 
the four digits printed in each reference equation.

For the Different Total problems, target equation operands in the Illegally Transposed condition were created by 
swapping the augend’s unit digit with the addend’s decade digit from the reference equation. In the Close condition, 
totals differed from the reference by ±1. In the Same Unit Total condition, sums were identical with the reference in 
the unit position but differed by at least ±1 in the decade position. Finally, target equation operands in the Different 
Unrelated condition served as a baseline for the Different Total problems to assess the perceptual overlap, overall 
distance, and part-whole congruency effects: they had different digits and yielded sums which differed from the 
reference equation by more than ±1.

Within each condition, overall distance was defined as the difference between totals, while problem size was 
calculated as the sum over the reference equation’s operands (cf. Ashcraft & Battaglia, 1978; LeFevre, Sadesky, & Bisanz, 
1996). Appendix B summarises these attributes for each of the Same and Different Total conditions. Based on all 120 
reference equations, target equations from the Identical and Legally Transposed conditions had significantly more digits 
in common with the reference than either the Decomposition, Sequential or Same Unrelated conditions, |t(595)| > 13.17, 
p < .001. From the pool of Different Total problems, a subset of 80 target equations (20 per condition) were selected 
to ensure that overall distance and problem size was matched between the Illegally Transposed, Same Unit Total, and 
Different Unrelated conditions. These target equations from the Different Unrelated condition did not significantly 
differ in problem size to the Illegally Transposed, Close or Same Unit Total conditions, |t(76)| < 1.54, p > .13, but they 
had a significantly larger overall distance between sums than in the Close condition, t(76) = 6.31, p < .001, and they 
contained fewer digits in common with the reference than in the Illegally Transposed condition. As required for the 
perceptual overlap and part-whole congruency effects, overall distance was not significantly different between the 
Different Unrelated and either the Illegally Transposed, t(76) = 0.05, p = .96, or Same Unit Total conditions, t(76) = 0.21, 
p = .83.

Procedure

Each trial of the mental addition task consisted of three successive displays. The first display, containing two sets of 
hash marks (#####) situated approximately 8 cm from the top and bottom of a 15" LCD screen, appeared for 300 ms. The 
second display replaced the upper series of hash marks with the reference equation for 1 second. Finally, the reference 
equation disappeared, and the target equation replaced the lower series of hash marks for 3 seconds or until response 
to the third display. Single-digit operands always included an extra 0 in the decade position (e.g., 01), and the larger 
operand within each equation always appeared on the left. As in the number bisection task, participants saw an equal 
number of equation pairs within each condition, 22 practice trials preceded the critical items, and the target equations 
were presented using a Latin Square design, such that each participant saw all 120 reference equations exactly once, but 
across participants all reference equations were paired with each of their different target equations. Participants were 
instructed to press one response key with their right hand if the upper and lower equation pair produced the same 
total, and another key with their left hand if they produced different totals. These instructions were illustrated with 
one example from the Same Unrelated condition, and another from the Illegally Transposed condition, to encourage 
decisions based on the reference and target equations’ totals rather than digit overlap alone. Participants were not 
informed about any other relation between the reference and target equations.

Results
Eighteen Australian students who responded to fewer than 50% of the Same or Different Total problems, two Australian 
students with an excessive number of anticipatory responses below 100 ms (>10%), and one Australian student who 
classified all problems as having different totals were excluded from the analyses. Data for the remaining 234 Australian 
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students, 79 Abacus Experts and 99 Japanese students were cleaned to remove anticipatory RT below 100 ms and 
responses exceeding 3,000 ms (3.31%, 2.87% and 2.23% of each group’s total, respectively).9

Figure 7 separately presents the mean RTs and error proportions for the Same and Different Total problems accord
ing to group and condition. Averaged over group, the GLMMs revealed that performance was affected by part-whole 
congruency, perceptual overlap, algorithms, and overall distance. For the part-whole congruency effect, significantly 
more errors were observed in the Same Unit Total than Different Unrelated condition, t = -0.16, p = .87, RT estimate 
= -6ms; z = 2.76, p = .01, log-odds estimate = 0.50. For the perceptual overlap effect, significantly faster RT and fewer 
errors were observed in the Identical, t = -27.81, p < .001, RT estimate = -382 ms; z = -16.12, p < .001, log-odds estimate 
= -1.97, and Legally Transposed, t = -11.18, p < .001, RT estimate = -150 ms; z = -9.46, p < .001, log-odds estimate = -0.72, 
than Same Unrelated condition, but significantly longer RT and more errors were observed in the Illegally Transposed 
than Different Unrelated condition, t = 2.98, p = .01, RT estimate = 113 ms; z = 6.41, p < .001, log-odds estimate = 1.14. 
Direct comparison between the Identical and Legally Transposed equations revealed significantly faster RT and fewer 
errors in the former than latter condition, t = 17.38, p < .001, RT estimate = 224 ms; z = 10.45, p < .001, log-odds estimate 
= 1.13. For the algorithms effect, significantly faster RT and fewer errors were observed in the Decomposition, t = -19.80, 
p < .001, RT estimate = -271 ms; z = -8.14, p < .001, log-odds estimate = -0.55, and Sequential, t = -10.99, p < .001, RT 
estimate = -152 ms; z = -4.26, p < .001, log-odds estimate = -0.27, than Same Unrelated condition. Direction comparison 
revealed significantly faster RT and fewer errors in the Decomposition than Sequential condition, t = 12.58, p < .001, RT 
estimate = 109 ms; z = 4.21, p < .001, log-odds estimate = 0.29. For the overall distance effect, significantly longer RT 
and more errors were observed in the Close than Different Unrelated condition, t = 3.68, p < .001, RT estimate = 137 ms; 
z = 4.18, p < .001, log-odds estimate = 0.75, and for problems with a smaller difference in sum between the reference 
and target equation calculated within conditions, t = -2.43, p = .01, RT estimate = -43 ms; z = -2.35, p = .02, log-odds 
estimate = -0.17. The problem size effect was not observed, because the reference equations with larger sums did not 
yield significantly longer RT or more errors for either the Same, t = -0.46, p = .65, RT estimate = -2 ms; z = 1.11, p = .27, 
log-odds estimate = 0.03, or Different Total problems, t = 1.76, p = .08, RT estimate = 27 ms; z = 1.48, p = .14, log-odds 
estimate = 0.09.

Averaged over condition, the GLMMs revealed that for both problem types, the Australian students were significant
ly faster but less accurate than either the Japanese students (Same Total: t = 3.59, p < .001, RT estimate = 72 ms; z = -5.93, 
p < .001, log-odds estimate = -0.62; Different Total: t = 3.75, p < .001, RT estimate = 138 ms; z = -2.80, p = .01, log-odds 
estimate = -0.35) or Abacus Experts (Same Total: t = -2.72, p = .01, RT estimate = -58 ms; z = 13.13, p < .001, log-odds 
estimate = 1.59; Different Total: t = -3.28, p < .001, RT estimate = -130 ms; z = 8.63, p < .001, log-odds estimate = 1.50). On 
average, the Japanese students were significantly less accurate than the Abacus Experts (Same Total: z = 6.97, p < .001, 
log-odds estimate = 0.97; Different Total: z = 6.04, p < .001, log-odds estimate = 1.15), but they did not differ significantly 
in RT (Same Total: t = 0.55, p = .59, RT estimate = 14 ms; Different Total: t = 0.21, p = .84, RT estimate = 10 ms).

9) Another 72 Australian students, 2 Abacus Experts and 13 Japanese students produced mean accuracy below 50% for either the Same or Different Total 
problems. Excluding those participants reduced the gap in RT and accuracy between the Australian students and Abacus Experts or Japanese students, but did 
not change any of the effects assessing differences in mental representations or strategy between the groups.
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Figure 7

Mean RT and Error for Each Group and Condition in the Mental Addition Task Separately Calculated for the Same (Top Row) and Different (Bottom Row) 
Total Problems

Note. The means for each condition were averaged over carry status. Error bars represent 95% confidence intervals estimated from GLMMs based 
purely on fixed effect uncertainty.

The descriptive estimates and test statistics from the group comparisons for each effect are presented in Figure 8. 
The perceptual overlap effects based on comparisons between the Identical and Legally Transposed conditions with 
the Same Unrelated baseline were significantly weaker for the Abacus Experts than either the Australian or Japanese 
students. The algorithms effect based on comparisons between the Decomposition and Sequential conditions with 
the Same Unrelated baseline were significantly weaker for the Australian students than either the Abacus Experts or 
Japanese students. The faster RT and fewer errors in the Decomposition than Sequential condition was significantly 
more pronounced for both the Abacus Experts and Japanese students than the Australian students. The part-whole 
congruency effect on accuracy was significantly more pronounced for the Japanese than Australian students, and it also 
differed significantly between the Australian students and Abacus Experts, because the Australian students produced 
slower RT in the Same Unit Total than Different Unrelated condition, but the opposite was observed among the Abacus 
Experts. Neither the overall distance nor problem size effects differed significantly according to group.
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Figure 8

The GLMM Group Comparisons for Each Effect in the Mental Addition Task

Note. Error bars represent 95% confidence intervals for each comparison. AS = Australian students; AE = Abacus Experts; JS = Japanese students.
'p < .05. *p < .017. **p < .001.

Discussion
In contrast to the number bisection task, the Abacus Experts’ advantage in overall performance was confined to 
accuracy. Responses to both the Same and Different Total problems were significantly faster, but less accurate, among 
the Australian students than either the Japanese students or Abacus Experts. The Abacus Experts produced significantly 
fewer errors than the Japanese students, but there was no RT difference between those two groups. This discrepancy be
tween the RT and accuracy data patterns suggests that a speed-accuracy trade-off affected the abacus-naïve participants. 
Given the relatively short time available to compute the reference equation’s sum, the Australian and Japanese students 
apparently relied on the number of shared digits between the reference and target equations, as indexed by their 
significantly larger perceptual overlap effects. Conversely, the smaller perceptual overlap effects for the Abacus Experts 
indicates that they were relatively immune to this variable, suggesting that they computed the reference equation’s sum 
more quickly.

The results also suggested that all groups preferred using a decomposition than sequential algorithm. However, the 
better performance in the Decomposition than Sequential or Same Unrelated conditions was significantly more marked 
for the Abacus Experts and Japanese students than Australian students. Such findings might reflect greater emphasis 
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on decomposition algorithms in Japanese classrooms, but they deviate from the prediction that Abacus Experts would 
prefer using a sequential algorithm.

Finally, the part-whole congruency effect results indicated that the Australian students were less reliant on decom
posed mental representations than the Japanese students. There was also a significant discrepancy between the Abacus 
Experts and Australian students in the part-whole congruency effect due to opposite RT differences between the Same 
Unit Total and Different Unrelated condition. We also observed a significant overall distance effect which did not differ 
significantly between the groups, suggesting greater reliance on holistic than decomposed magnitude representations 
than in the preceding experiments. However, Nuerk, Kaufmann, Zoppoth, and Willmes (2004) suggested an alternative 
interpretation for this observation. Totals from the reference and target equations were identical in the decade and 
unit positions for the Close (e.g., 67+31_85+12 = 98_97) and Same Unit Total (e.g., 67+31_45+23 = 98_68) conditions, 
respectively. Thus, rather than reflecting holistic representations, worse performance in the Close condition might arise 
from decomposed representations in which participants focus entirely, or predominantly, on the decade digits’ totals 
(cf. the rationale provided for the Same Unit Total condition). The combination of a large overall distance effect but a 
negligible part-whole congruency effect shown by the Australian students may therefore reflect a tendency to respond 
‘same’ when the decade digits totals matched and ‘different’ when they mismatched – a strategy that would only 
produce an average error rate of 15%. Such a strategy would also align with the salience of decades in both English 
and Japanese following translation of the reference equation into verbal working memory for later comparison with the 
target equation (Macizo & Herrera, 2010; Miura, 1987; Nuerk, Weger, & Willmes, 2005).

General Discussion
The present research compared a large sample of mental abacus experts with two groups of abacus-naïve adults on 
performance in three domain-general measures of working memory (memory updating, operation span, and spatial 
memory) and three domain-specific numerical tasks (magnitude judgement, number bisection, and mental addition). 
The results indicated that the Abacus Experts only performed better when the task required mental arithmetic – for 
example, calculation of midpoints or totals for subsequent report (memory updating), or comparison with each trial’s 
medial number (number bisection) or target equation total (mental addition). The Abacus Experts did not outperform 
the Japanese students in the operation span or magnitude judgement tasks. Although those tasks also required decisions 
about numerical stimuli, directly retrieved solutions or quantities from long-term memory can be used for single-digit 
equation verification in the operation span task (e.g., 4 + 2 = 7, true or false?), or identifying the larger number in the 
magnitude judgement task (e.g., 4 or 2, which is bigger?). Overall, this pattern suggests that mental abacus expertise 
is associated with a domain-specific advantage in mental calculation, rather than a general processing advantage for 
numerical stimuli, at least for the range of numbers tested in this research (either single-digit in the working memory 
tasks, or double-digits in the numerical tasks).

Apart from the overall group comparisons summarised above, stimuli for the working memory and numerical tasks 
were selected to investigate whether mental abacus expertise or socio-cultural factors are associated with augmented 
central executive and visuo-spatial working memory, increased reliance on holistic than decomposed mental represen
tations of two-digit numbers, preference for a sequential than decomposition algorithm, and greater sensitivity to 
semantic than perceptual overlap between numbers. The group differences relevant to each hypothesis are discussed in 
the following sections, followed by a consideration of their broader implications for numerical cognition and the study 
of expert performance.

Augmented Central Executive and Visuo-Spatial Working Memory?
The results from Experiment 1 yielded no evidence to suggest that mental abacus experts have superior central 
executive and visuo-spatial working memory, because they only performed better than both non-expert groups in 
the memory updating task. One interpretation for the Abacus Experts’ better performance in the memory updating 
task, but worse performance (than the Japanese students) on the operation span task, is that training cultivates a 
particular functional aspect of working memory: updating, rather than shifting of attention between processing and 
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storage (Miyake et al., 2000). Alternatively, better performance in the memory updating task might simply reflect the 
Abacus Experts’ proficiency with mental arithmetic problems. To adjudicate between these possibilities, future research 
might compare experts and non-experts using tasks without numerical stimuli that specifically target each of the three 
functional aspects of central executive working memory (updating, shifting and inhibition; Miyake et al., 2000).

Contrary to Lee et al. (2007), and in line with Barner et al. (2016), the Abacus Experts did not show better 
visuo-spatial working memory. Instead, performance in the spatial memory task was not significantly different between 
all three groups. However, this result should be interpreted with caution, not only because a ceiling effect was observed, 
but also because the mental abacus experts were substantially younger than both non-expert groups. If performance in 
visuo-spatial working memory tasks generally favours older participants (e.g., Pickering, 2001), the expected positive 
relationship between mental abacus expertise and visuo-spatial working memory in the younger Abacus Experts might 
be counteracted to yield no group difference in the spatial memory task. Nonetheless, the Australian and Japanese 
students’ performance in the spatial memory task was unsurpassed by the Abacus Experts. This result is unlikely to 
be due to a lack of statistical power or skill, because the sample of Abacus Experts recruited for this research was 
larger than most previous studies (N = 79, with 19% awarded the highest rank of 10th dan by the League for Soroban 
Education in Japan). Consistent with this conclusion, Srinivasan, Wagner, Frank, and Barner (2018) proposed that the 
mental abacus engages cognitive and perceptual abilities prevalent in novices. Focusing on the physical abacus as a 
springboard for mental abacus calculations (see also Stigler, 1984), Frank and Barner (2012) hypothesised that the device 
is optimised for visual processing, because its rectilinear structure with four beads per column permits users to store and 
manipulate magnitudes using two phylogenetically ancient cognitive mechanisms: the approximate number system for 
large numbers (e.g., Feigenson, Dehaene, & Spelke, 2004), and the object tracking system for small numbers (e.g., Mou & 
vanMarle, 2014). Both systems spontaneously operate when abacus-naïve adults estimate quantity over multiple sets in 
parallel (Halberda, Sires, & Feigenson, 2006). Research with mental abacus experts and non-experts in visual cognition 
therefore led Frank and Barner (2012) to conclude that the experts devoted “existing visual resources … to represent 
large exact numerosities” (p. 136, emphasis mine).

Less Decomposed and More Holistic Mental Representation of Two-Digit Numbers?
All three numerical tasks were constructed to explore whether mental representations of two-digit numbers differed 
between the mental abacus experts and non-experts. The results successfully replicated the unit-decade compatibility 
and overall distance effects for the Australian and Japanese students in the magnitude judgement task of Experiment 
2, suggesting that both holistic and decomposed mental representations affected these non-experts’ responses. Similar 
findings were observed in the number bisection task by extending the unit-decade compatibility effect to the problems’ 
outer numbers, and introducing a novel variant – the part-whole congruency effect – based on conditions which 
manipulated response consistency between the entire stimulus and subset of unit digits. Results from the mental 
addition task also implied that both representation types are involved for the non-experts. On average, the part-whole 
congruency effect was significant, indicating that performance was affected by decomposed mental representations. 
Holistic magnitude representations also seemed to affect responses, because performance was sensitive to the within 
conditions measure of overall distance between the reference and target equation totals. These findings support Moeller, 
Huber, Nuerk, and Willmes’ (2011) hybrid model for two-digit numbers by providing converging evidence across three 
different numerical tasks using the unit-decade compatibility and part-whole congruency effects.

The group comparisons revealed that the unit-decade compatibility and part-whole congruency effects were signifi
cantly weaker for the Abacus Experts than non-experts in the number bisection task. These findings suggest that mental 
representations are less decomposed following extensive practice with Hindu-Arabic numbers, as predicted by Tzelgov 
et al. (2015). Significant group differences in the part-whole congruency effect were also observed in the mental addition 
task, but the smaller unit-decade compatibility effect shown by the Abacus Experts in the magnitude judgement task 
did not significantly differ from either of the abacus-naïve groups. This discrepancy suggests that group differences in 
reliance on decomposed mental representations are more readily observed in arithmetic tasks than simple magnitude 
judgements.
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Contrary to Tzelgov et al.’s prediction, the Abacus Experts showed equivalent or smaller overall distance and 
problem size effects than the abacus-naïve groups across all tasks, contradicting the expected positive relationship 
between those variables and the strength of an individual’s holistic magnitude representations. This inconsistency might 
be resolved by examining the origins of the symbolic distance effect for single-digit numbers. According to Holloway 
and Ansari (2009), the distance effect results from noisy mappings between Hindu-Arabic numerals and the magnitudes 
they represent. Extensive practice accessing the meaning of a Hindu-Arabic numeral increases the distinctiveness of one 
magnitude over those in the surrounding neighbourhood. These increasingly precise representations, reflecting stronger 
connections between symbols and referents, reduce the amount of mental overlap between quantities to yield smaller 
distance effects for children with higher mathematical achievement test scores (Holloway & Ansari, 2009), and for 
literate than illiterate adults who differ in the amount of formal education received (Zebian & Ansari, 2012). Extending 
this idea to two-digit numbers, stronger connections between sequences of Hindu-Arabic numerals and their associated 
holistic magnitude would also produce smaller rather than larger overall distance and problem size effects. Observing 
this pattern for the Abacus Experts in the present research suggests that their mental representations of two-digit 
numbers are simultaneously less decomposed and more precise than the abacus-naïve adults.

Preference for a Sequential Algorithm?
Several conditions from the mental addition task were designed to evaluate whether a sequential algorithm was 
preferred by the mental abacus experts, while a decomposition algorithm was preferred by the non-experts. Such a 
difference would be indexed by faster and more accurate performance in the Sequential than Decomposition or Same 
Unrelated conditions for the Abacus Experts, but superior performance in the Decomposition than Sequential or Same 
Unrelated conditions for both the Australian and Japanese students. This prediction was not supported, because the 
better performance in the Sequential than Same Unrelated condition did not significantly differ between the groups, and 
the superior performance in the Decomposition than Sequential or Same Unrelated condition was significantly more 
pronounced for the Abacus Experts and Japanese students than Australian students. These results suggest that both 
Japanese samples preferred using a decomposition algorithm, but they also flexibly used a sequential algorithm like the 
Australian students because all groups performed better in the Sequential than Same Unrelated condition.

Flexible algorithm use for all groups might have arisen from spontaneous development or formal education about 
multiple arithmetic procedures. For example, Heirdsfield and Cooper (2004) reported that four Australian Grade 3 
students from a sample of six had invented procedures to solve arithmetic problems by themselves, including a 
sequential (e.g., 28 + 35 = 28 + 30 followed by 58 + 5) and shortcut (e.g., 45 + 19 = 45 + 20 – 1) algorithm not taught in the 
children’s classrooms. Formal education might instead explain the Abacus Experts and Japanese students’ preference, 
because they are taught how to add and subtract using a decomposition algorithm from as early as Grade 2 (Takahashi 
et al., 2008). Early and sustained exposure to a decomposition algorithm could have promoted fluency or dominance 
for this procedure, especially for ‘easier’ problems which only contain two-digit operands. Another explanation for 
these unexpected results acknowledges subjectivity in how mental abacus proficiency was defined in this research 
using ranks awarded by the League for Soroban Education in Japan. Extraordinary mental arithmetic performance 
can be achieved without mental abacus training (Pesenti, 2005), and variability in mental abacus proficiency probably 
exists within each awarded rank. These issues with group definition might therefore have limited the extent of group 
differences in the calculation strategies they applied. Regarding the Japanese students’ flexible algorithm use, McIntosh, 
Nohda, Reys, and Reys (1995) describe Japanese textbooks which present multiple procedures, such as “subtract then 
add” (e.g., 13 – 9 = (10 – 9) + 3 = 4) and “subtract then subtract” (e.g., 13 – 9 = 13 – 3 – 6 = 4). Formal exposure to 
multiple procedures could therefore have reinforced elements of both decomposition and sequential algorithms for the 
Japanese students over time (Sowder, 1990).

Reduced Sensitivity to Perceptual Overlap?
The perceptual overlap effects based on comparisons between the Identical and Legally Transposed conditions with the 
Same Unrelated baseline were significantly larger for the Australian and Japanese students than Abacus Experts in the 
mental addition task of Experiment 4. These results suggest a processing strategy by the Abacus Experts that is less 
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sensitive to perceptual overlap, while both groups of non-experts increased their reliance on visual characteristics, such 
as the number of shared digits, to achieve satisfactory performance.

Such reliance on perceptual overlap by the Australian and Japanese students is consistent with Stanovich’s (1980) 
interactive-compensatory model. Originally developed for reading comprehension, the model proposes that individuals 
simultaneously use different sources of knowledge when processing written information (e.g., shape of letters, word 
frequency, syntax and context), and that any knowledge source can used by an individual to compensate for deficits 
in other areas. For example, “a reader with poor word recognition skills may actually be prone to a greater reliance 
on contextual factors because these provide additional sources of information” (p. 36). Viewed from this perspective, 
compensation was used to explain larger regularity effects in speeded pronunciation for slower readers (Brown, Lupker, 
& Colombo, 1994), stronger frequency effects in lexical decision among those with less print exposure (Chateau & 
Jared, 2000), and heightened sensitivity to orthographic or phonological neighbourhood size when students with inferior 
vocabulary perform speeded pronunciation or lexical decisions (Yap, Balota, Sibley, & Ratcliff, 2012).

Translating Stanovich’s model from reading comprehension to mental arithmetic, deficits in retrieval or algorithm 
execution might lead some individuals to compensate by increasing sensitivity to stimulus features that will allow 
them to apply task-specific strategies (e.g., parity or multiplicativity in the number bisection task: Nuerk et al., 2002; 
magnitude of the proposed solution, “split”, when verifying simple equations: Ashcraft & Battaglia, 1978). Such deficits 
typically manifest as slower RT and poorer accuracy (e.g., LeFevre & Bisanz, 1986; Moeller, Pixner, Zuber, Kaufmann, 
& Nuerk, 2011). However, variability in strategies chosen across individuals can sometimes disguise or magnify these 
differences in task performance (e.g., Shrager & Siegler, 1998; Torbeyns & Verschaffel, 2013). For example, Campbell and 
Xue (2001) found that Canadian adults were more likely to compensate for deficits in retrieval than Chinese adults by 
using slower error-prone back-up strategies (e.g., counting) when solving single-digit addition problems. Deficits for 
the Canadian participants were reflected in their slower RT and lower accuracy, while the compensatory strategy used 
was inferred from the problem size effect, which was larger for the Canadian than Chinese participants. These results 
comparing ‘arithmetically superior’ Chinese with ‘arithmetically inferior’ Canadian participants reinforce Stanovich’s 
(1980) idea that less able individuals compensate by drawing upon other knowledge sources, including the magnitude 
of operands or alternative algorithms at their disposal. The Abacus Experts’ smaller perceptual overlap effects is 
consistent with Stanovich’s framework because it predicts that skilled individuals would be less sensitive to the visual 
characteristics of the stimulus, such as the number of shared digits, if they can already compute the reference equation’s 
sum before its target equation is presented. The same framework assuming deficits in algorithm execution can therefore 
explain the Australian and Japanese students’ larger perceptual overlap effects and worse performance in the mental 
addition task of Experiment 4.

Mental Abacus Expertise or Socio-Cultural Factors?
Three groups were compared in this research to distinguish the effects of mental abacus expertise and socio-cultural 
factors on performance in the working memory and numerical tasks. The Australian students differed from the Abacus 
Experts on socio-cultural background and abacus exposure, while the Japanese students only differed from the Abacus 
Experts on the latter variable. The results indicated fewer and smaller overall differences in performance between 
the Australian and Japanese students than either group with the Abacus Experts. For example, performance in the 
numerical tasks only differed between the Australian and Japanese students by an average of 135 ms on RT and 0.36 
log-odds on accuracy, compared to 501 ms or 591 ms on RT and 0.86 or 1.06 log-odds on accuracy between either group 
and the Abacus Experts. This outcome suggests that mental abacus expertise, rather than socio-cultural factors, was 
responsible for the Abacus Experts’ better overall performance. Comparisons between both non-expert groups revealed 
a small but significant contribution of socio-cultural factors on mental arithmetic performance, because the Japanese 
students consistently outperformed the Australians in the number bisection, mental addition, memory updating and 
operation span tasks. They also revealed that mental representations of two-digit numbers, and strategies used in the 
mental addition task, were affected by socio-cultural factors, because the Australian students produced a larger overall 
distance effect in the magnitude judgement task, and smaller differences in performance between the Decomposition 
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or Sequential conditions and Same Unrelated baseline in the mental addition task, than either the Japanese students or 
Abacus Experts.

Several aspects of mental abacus training might have contributed to the Abacus Experts’ better overall performance, 
less decomposed mental representations, and decreased reliance on perceptual overlap. For example, mental abacus 
experts often use and memorise sets of complementary numbers (e.g., pairs which sum to 10: 1-9, 2-8, 3-7, etc; Donlan & 
Wu, 2017), because it reduces the cognitive load associated with carries and borrows (e.g., 8 + 3 = 8 + 10 – 7), thus yield
ing better mental arithmetic performance. Mental abacus experts also tend to gesture while solving arithmetic problems 
(Hatano et al., 1977), actions which enhance their mental arithmetic performance (Frank & Barner, 2012) by providing 
“a second code” to augment the representations stored in their visuo-spatial working memory (Brooks, Barner, Frank, 
& Goldin‐Meadow, 2018). Extensive practice solving arithmetic problems could also have contributed to the Abacus 
Experts’ better performance by obviating the need for compensatory strategies like perceptual overlap (Stanovich, 1980) 
or reliance on decomposed mental representations (Tzelgov et al., 2015), and by automatising processes like algorithm 
execution or magnitude judgements (e.g., Gebuis, Cohen Kadosh, de Haan, & Henik, 2009; Logan, 1985; Pesenti, 2005).

The Australian students’ worse performance in the mental arithmetic tasks, less precise mental representations, and 
relative insensitivity to decomposition or sequential algorithms might also reflect various socio-cultural factors. First, 
rote learning techniques are commonly used in Asian countries both at school and at home (e.g., Zhang & Zhou, 2003) 
to ensure fast and accurate mental arithmetic performance, but they are often discouraged in Western countries such as 
Australia (e.g., Imbo & LeFevre, 2009). Second, the structure and pedagogy of Japanese and Western maths classrooms 
differ in emphasis on developing speed and fluency of number fact retrieval, and the value assigned to homework (Chen 
& Stevenson, 1989; Stigler & Perry, 1988). Third, Asian academic success has sometimes been attributed to a range of 
motivational factors and attitudes towards maths (e.g., Chen & Stevenson, 1995; Whang & Hancock, 1994), particularly 
the view from Japanese parents that “everyone, under the right circumstances and with enough hard work, can learn to 
do math” (Nisbett, 2003, p. 189). Fourth, reliance on electronic calculators is more strongly encouraged in Western than 
Asian classrooms (Campbell & Xue, 2001; LeFevre & Liu, 1997), which may disguise conceptual and procedural deficits 
concerning multi-digit algorithms, thus contributing to the poorer arithmetic performance of Western children.

Finally, the Australian students’ discrepant results might be associated with English, a language characterised by less 
transparent number words than Japanese (e.g., Miura, 1987). For example, the Japanese number word “ten-two” shares 
a transparent relationship with the place-value sequence “12”, because the powers of 10 are explicitly represented using 
a more regular counting system than its English equivalent “twelve” (Miura et al., 1994). English, the less transparent 
language with irregular number words, might therefore impede place-value understanding among its speakers. Support 
for this hypothesis can be found in Miura and Okamoto (1989), who reported lower scores in a place-value test for 
monolingual children who spoke English than Japanese. Because the Japanese children had not yet received lessons on 
place-value when they were tested, the authors concluded that language rather than education was responsible for their 
precocious understanding, knowledge which Miura and Okamoto found to be positively correlated with mathematics 
achievement in both monolingual groups.

Implications for Numerical Cognition, Cognitive Training, and Expert Performance
The systematic comparisons across three numerical tasks that distinguished this investigation of mental abacus experts 
offer new insights into the development of numerical cognition across individuals. The results suggested the presence 
of both holistic and decomposed magnitude representations for two-digit numbers as indexed by the overall distance, 
problem size, unit-decade compatibility and part-whole congruency effects. However, these representations were less 
decomposed and more precise for the Abacus Experts than non-experts. Such findings extend Nuerk, Kaufmann, et 
al.’s (2004) theory regarding the developmental progression of magnitude representations for two-digit numbers: from 
sequential to parallel processing of decade and unit digits with increasing age. However, beyond parallel processing, 
another stage was suggested by the present research – one characterised by diminished reliance on decomposition and 
greater precision for holistic magnitudes with increasing experience with Hindu-Arabic numbers (e.g., Tzelgov et al., 
2015). This further stage was attained by the Abacus Experts beyond the parallel processing stage demonstrated by both 
non-expert groups.
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Turning to comparisons between the working memory tasks that yield insight into the effects of training on 
cognitive abilities, the Abacus Experts’ visuo-spatial working memory was not superior, nor were their central executive 
processes consistently better than the non-experts. These results challenge research (e.g., Dong et al., 2016; Lee et al., 
2007) claiming that mental abacus training significantly enhances domain-general abilities. Instead, they are consistent 
with the literature on cognitive transfer (e.g., Redick et al., 2013) which indicates that it is rare for domain-general 
abilities to be affected by extensive training on unrelated tasks (see also Barner et al., 2016).

Finally, turning to implications for the study of expert performance, the results supported a combination of flexible 
and inflexible behaviour. For example, the Abacus Experts flexibly used a decomposition and sequential algorithm in the 
mental addition task, but their responses were relatively immune to perceptual overlap between equations. Insensitivity 
to perceptual overlap suggests that the Abacus Experts inflexibly calculated the totals for each pair of reference and 
target equations. This tension between flexible and inflexible behaviour corresponds to a division between “adaptive” 
and “routine” experts (e.g., Baroody & Dowker, 2003; Hatano, 1982). Although the latter is often used to describe mental 
abacus experts (e.g., Kojima, 1954), evidence of flexibility in the present research (see also the ‘super’ chess experts in 
Bilalić, McLeod, & Gobet, 2008) suggests that this cognitive disadvantage does not apply to highly skilled mental abacus 
experts.

Conclusion
The central findings from the present research were that the Abacus Experts only performed better than both non-ex
pert groups when the task involved mental arithmetic, and that their superiority was principally due to mental abacus 
expertise than socio-cultural factors. The results also showed that mental representations of two-digit numbers are more 
precise for the Abacus Experts, and that perceptual overlap played a smaller role in the processing strategy used by the 
experts during mental addition. These revelations suggest that mental abacus training can be used to support arithmetic 
instruction or increase mental arithmetic proficiency (see also Barner et al., 2016). However, there was no evidence to 
suggest that training improves domain-general processes like working memory or indiscriminately augments numerical 
processing efficiency. The efficacy of mental abacus training for socio-cultural contexts differing in pedagogy, calculator 
use, rote learning practices, or attitudes towards maths, will also need to be addressed in future research.
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Appendices

Appendix A
All GLMMs statistically controlled for the following trial-level variables on RT and accuracy: trial number, RT of the previous 
response, and accuracy of the previous response. Whether the previous trial was within- or between-decades was included in the 
GLMMs for Experiment 2. The position of the largest number, and whether the medial number was above or below the midpoint, 
were also included as trial-level variables in the GLMMs for Experiment 3. Carry status was also included in the GLMMs for 
Experiment 4. The effects on RT and accuracy by those trial-level variables were as follows.

The GLMMs for the magnitude judgement task of Experiment 2 revealed significantly slower RT and lower accuracy following 
an error (t = 15.52, p < .001; z = 2.24, p = .03), as the number of trials increased (t = 5.28, p < .001; z = 2.95, p = .003), or when the 
previous trial was within-decades (t = -3.22, p = .001; z = -2.80, p = .005). Significantly faster RT and lower accuracy was also observed 
following shorter previous responses (t = 20.14, p < .001; z = -4.01, p < .001).

The GLMMs for the number bisection task of Experiment 3 revealed that for both correctly and incorrectly bisected problems, 
RT was significantly faster as the number of trials increased (t = -3.64, p < .001; t = -1.92, p = .05, respectively), or for shorter 
previous responses (t = 7.31, p < .001; t = 6.26, p < .001, respectively). Neither predictor significantly influenced accuracy for either 
problem type (|z| < 1.88, p > .06), nor did the spatial position of the larger number on the left or right side of the screen significantly 
influence RT (t = 1.26, p = .21) or accuracy (z = 1.07, p = .28) for the incorrectly bisected problems. However, RT was significantly 
faster when the largest number was on the right for the correctly bisected problems (t = 3.18, p = .001; z = -0.27, p = .79). RT for the 
incorrectly bisected problems was significantly faster (t = 2.91, p = .004) and accuracy significantly higher (z = 2.27, p = .02) when the 
medial number was below rather than above the arithmetic midpoint. However, this effect was modulated by spatial position, being 
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significantly more pronounced in both RT and accuracy when the larger number appeared on the right than left (t = -2.41, p = .02; z = 
-1.99, p = .05).

The GLMMs for the mental addition task of Experiment 4 revealed that for both the Same and Different Total problems, RT 
was significantly faster for the No Carry than Unit Carry problems (t = 11.77, p < .001; t = 2.27, p = .02, respectively), or when the 
previous response was faster (t = 24.93, p < .001; t = 9.11, p < .001, respectively). Trial number and preceding accuracy also influenced 
performance for the Same Total problems, with RT significantly decreasing with an increasing number of trials (t = -10.02, p < .001), 
and errors significantly less likely when the previous response was correct (z = 4.60, p < .001). Neither carry status (z = 0.62, p = .54), 
trial number (z = -0.83, p = .41), speed (z = 1.31, p = .19) nor accuracy (z = 1.42, p = .16) of participants’ previous response significantly 
correlated with accuracy for the Different Total problems.

Appendix B: Mean Stimulus Attributes for the Problems Shown in This Research
Table B1

Mean Stimulus Attributes for the Outer Numbers From the Number Bisection Task of Experiment 3

Attribute

Congruent Incongruent

Compatible Incompatible Compatible Incompatible

Absolute Overall Distance 34.00 34.13 33.88 34.00

Absolute Decade Distance 2.88 3.88 2.88 3.88

Absolute Unit Distance 5.25 4.63 5.13 4.75

Problem Size 58.63 58.06 58.69 58.44

Note. Decade distance is necessarily larger for the incompatible than compatible pairs when matched on overall distance because they cross a(nother) 
decade boundary (see Nuerk, Weger, & Willmes, 2004 for a detailed discussion).

Table B2

Example Stimuli in the Number Bisection Task of Experiment 3 According to Part-Whole Congruency, Unit-Decade Compatibility and Bisector Type

Condition Correctly Bisected

Incorrectly Bisected

Close Far

Part-Whole Congruent
Compatible 45_67_89 45_68_89 45_74_89

Incompatible 47_65_83 47_64_83 47_71_83

Part-Whole Incongruent
Compatible 42_58_74 42_53_74 42_63_74

Incompatible 45_58_71 45_53_71 45_63_71

Table B3

Mean Values for Each Stimulus Attribute According to Condition for the Same Total Problems of Experiment 4

Attribute Identical
Legally 

Transposed Decomposition Sequential Same Unrelated

Operand Average 42.28 42.28 42.28 42.28 42.28

Reference/Target Operand Average 42.28 42.28 42.28 42.28 42.28

Reference/Target Sum 84.55 84.55 84.55 84.55 84.55

Absolute Difference Between Sums 0 0 0 0 0

Number of Shared Digits 4 4 0.72 2 1.02

Number of Digits in Shared Positions 4 2 0.23 2 0.19

Note. The values were averaged over Carry Status.
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Table B4

Mean Values for Each Stimulus Attribute According to Condition for the Different Total Problems of Experiment 4

Attribute Illegally Transposed Close Same Unit Total Different Unrelated

Operand Average 44.70 42.83 41.05 43.74

Reference Operand Average 39.30 43.00 42.68 42.55

Reference Sum 78.60 86.00 85.35 85.10

Target Operand Average 50.10 42.65 39.43 44.93

Target Sum 100.20 85.30 78.85 89.85

Absolute Difference Between Sums 26.55 1 25.50 26.35

Number of Shared Digits 4 1.05 1.05 0

Number of Digits in Shared Positions 2 0.50 0.45 0

Note. The values were averaged over Carry Status.
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