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Abstract
For students to advance beyond arithmetic, they must learn how to attend to the structure of math notation. This process can be 
challenging due to students' left-to-right computing tendencies. Brackets are used in mathematics to indicate precedence but can also 
be used as superfluous cues and perceptual grouping mechanisms in instructional materials to direct students’ attention and facilitate 
accurate and efficient problem solving. This online study examines the impact of operator position and superfluous brackets on 
students’ performance solving arithmetic problems. A total of 528 students completed a baseline assessment of math knowledge, then 
were randomly assigned to one of six conditions that varied in the placement of higher-order operator and the presence or absence of 
superfluous brackets: [a] brackets-left (e.g., (5 * 4) + 2 + 3), [b] no brackets-left (e.g., 5 * 4 + 2 + 3), [c] brackets-center (e.g., 2 + (5 * 4) + 
3), [d] no brackets-center (e.g., 2 + 5 * 4 + 3), [e] brackets-right (e.g., 2 + 3 + (5 * 4)), and [f] no brackets-right (e.g., 2 + 3 + 5 * 4). 
Participants simplified expressions in an online learning platform with the goal to “master” the content by answering three questions 
correctly in a row. Results showed that, on average, students were more accurate in problem solving when the higher-order operator 
was on the left side and less accurate when it was on the right compared to in the center. There was also a main effect of the presence 
of brackets on mastery speed. However, interaction effects showed that these main effects were driven by the center position: 
superfluous brackets only improved accuracy when students solved expressions with brackets with the operator in the center. This 
study advances research on perceptual learning in math by revealing how operator position and presence of superfluous brackets 
impact students’ performance. Additionally, this research provides implications for instructors who can use perceptual cues to 
support students during problem solving.
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As students progress beyond arithmetic in middle school, they are challenged to learn to attend to the structure of math 
notation (Hoch & Dreyfus, 2004; Kieran, 1989; Linchevski & Livneh, 1999). However, there is growing evidence that 
students struggle with noticing and understanding the structure of math notation (Hoch & Dreyfus, 2004; Linchevski 
& Livneh, 1999; Papadopoulos & Gunnarsson, 2020). Linchevski and Livneh (1999) first introduced the term “structure 
sense” to describe students’ ability to grasp arithmetic structures. Examples of having a strong structure sense include 
being able to identify equivalent forms of a math expression (e.g., 3 (x + 2) + 5 is equivalent to 5 + 3 (x + 2) as 
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well as 3x + 11) and to discriminate expression forms that are relevant to the task from those that are not (Hoch & 
Dreyfus, 2004). Students often have weak structure sense, which is shown through two widespread misunderstandings: 
1) the detachment of a math term from its indicated operation (e.g., mistaking 4 + n – 2 + 5 as equivalent to 4 + n 
– 7), and 2) incorrectly linking operations to non-adjacent terms (e.g., in the equation 115 − n + 9 = 61, ignoring “n” 
to subtract 9 and create 106 – n = 61; Linchevski & Livneh, 1999; Papadopoulos & Gunnarsson, 2020). Importantly, 
developing structure sense is dependent on students understanding the mathematical meaning of notations as well as 
the appropriate rules and operations to apply within expressions. 1) the detachment of a math term from its indicated 
operation (e.g., mistaking 4 + n – 2 + 5 as equivalent to 4 + n – 7), and 2) incorrectly linking operations to non-adjacent 
terms (e.g., in the equation 115 – n + 9 = 61, ignoring “n” to subtract 9 and create 106 – n = 61; Linchevski & 
Livneh, 1999; Papadopoulos & Gunnarsson, 2020). Importantly, developing structure sense is dependent on students 
understanding the mathematical meaning of notations as well as the appropriate rules and operations to apply within 
expressions.

Aside from structure sense, the position of terms within a math expression may play a role in how students reason 
about math. Students may also struggle to resist the urge to solve math problems from left to right. Early middle school 
students have a strong tendency to adhere to the left-to-right principle when solving problems, which may lead them 
to overlook and violate the order of operations (Banerjee & Subramaniam, 2005; Blando et al., 1989; Gunnarsson et 
al., 2016; Kieran, 1979). For instance, Kieran (1979) found that when solving 5 + 2 * 3, many middle school students 
added 5 and 2 first, indicating that they overlooked the order of operations and instead evaluated math notations in 
a left-to-right sequence. By following the left-to-right tendency in the equation 5 + 2 * 3, students reached the wrong 
answer; however, when those students solved for 4 * 2 – 3, they correctly identified that they had to first multiply 4 
and 2 (Kieran, 1979). This observation suggested that the position of higher-order operators (e.g., multiplication and 
division) within a math expression may influence students’ reasoning and performance in problem solving. To extend 
this research, our study aims to uncover the isolated effects of higher-order operator position (hereafter referred to as 
HOO) on students’ performance simplifying order-of-operations problems.

One potential way to support students’ structure sense and help them notice the order of operations when solving 
math problems is to increase the visual salience of important cues in an expression. Brackets are often used in 
mathematics to group numbers together, to emphasize, and/or to identify precedence. In some cases, brackets are 
necessary to indicate precedence (i.e., (a + b) * c + d) and in other times, brackets are used only for emphasis, or are 
superfluous–meaning they do not change the meaning of the mathematical expression when removed (i.e., a + (b * c) 
+ d). Prior research has found that, even in cases where brackets are not present or necessary, students have a natural 
inclination to use mental brackets to interpret arithmetic and algebraic expressions (e.g., Papadopoulos & Gunnarsson, 
2020; Papadopoulos & Thoma, 2022). Many students are taught the acronyms BEDMAS (Brackets, Exponents, Division, 
Multiplication, Addition, and Subtraction) or PEMDAS (depending on the country) to remember as a set of rules for 
applying operations. Due to this emphasis, students may be relying on and using superfluous brackets mentally as a 
failsafe way to remember their precedence rules. An alternative explanation is that superfluous brackets may be used by 
students as a perceptual grouping cue that could be used to make crucial mathematical structures like HOO more salient 
to students and help with encoding during problem solving. Regardless of the mechanism, these studies indicate that the 
presence of superfluous brackets-—brackets that do not change the meaning of notation—can guide learners’ attention 
to the correct procedures and improve performance.

A number of previous studies have investigated how superfluous brackets influence mathematical problem solving 
(e.g., Hoch & Dreyfus, 2004; Marchini & Papadopoulos, 2011). For example, Linchevski and Livneh (1999) found that 
students who lacked structure sense (and were therefore likely to focus on surface structures over systemic structures 
of math terms and operations) would struggle with expressions of the type a ± b × c, as students would need to 
understand that b should be connected with the c, not a, due to order of precedence. The authors also suggested that 
inserting superfluous brackets around b × c could help students understand that the multiplication operation should be 
calculated first, followed by addition, making the order of operation rules (i.e., BEDMAS or PEMDAS) more salient and 
explicit. Other research exploring the role of superfluous brackets as a perceptual cue has found that students are more 
accurate at algebraic problem solving when equations include superfluous brackets to emphasize structures compared 
to equations that do not (e.g., Hoch & Dreyfus, 2004; Marchini & Papadopoulos, 2011). In other work, superfluous 
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brackets have been shown to help students achieve higher success rates solving problems (Hoch & Dreyfus, 2004; 
Marchini & Papadopoulos, 2011; Papadopoulos & Gunnarsson, 2018, 2020). For instance, in a study with elementary 
school students in Italy and Greece, Marchini and Papadopoulos (2011) found that when students completed math 
expressions with superfluous brackets, they were more likely to calculate some expressions correctly and were more 
likely to recognize important expression structures (i.e., the order of operations). This finding suggests that superfluous 
brackets can highlight the structural elements of an expression for students; in turn, attending to important problem 
elements may improve students’ structure sense and consequently, support their math problem solving. However, in 
other work, adding superfluous brackets have been found to have no effect (Gunnarsson et al., 2016) and can lead to 
misinterpretations and procedural errors (e.g., Ayres, 2006; Hewitt, 2005; Kieran, 1979).

Given these mixed results, it is important for researchers and educators to better understand how adding superfluous 
brackets to math notations could be used to help support student performance and learning. In addition to understand
ing superfluous brackets’ influences on outcomes, it is also important to better understand how brackets and HOO 
position within a math expression influence students’ performance to identify the situations where these brackets 
may help versus hinder students. The current study aims to advance our understanding of how operator position and 
superfluous brackets within a math expression can affect students’ problem-solving performance in an online learning 
environment.

The goals of our study are threefold. First, we aim to examine the isolated impact of HOO position on students’ 
performance on simple arithmetic problems in an online activity. Second, we aim to extend prior research by testing 
whether the presence of superfluous brackets can support student performance. Third, we assess if the presence of 
superfluous brackets moderates the impact of HOO position. Specifically, we examine how the presence of superfluous 
brackets and the position of HOOs (i.e., multiplication and division) within an expression independently and simultane
ously influence student performance.

Theoretical Framework
Perceptual Learning and Mathematical Structure

Learning math is naturally dependent on our perceptual processes; the way that we perceive incoming stimuli informs 
the way we think about it (Gibson, 1969; Marghetis et al., 2016). Perceptual learning theory suggests that learning and 
reasoning in math does not only depend on our perceptual processes, but that we actually develop perceptual-motor 
routines over time to direct our attention towards salient perceptual cues in math notation (Goldstone et al., 2017; 
Jacob & Hochstein, 2008; Kellman et al., 2010; Kirshner & Awtry, 2004; Patsenko & Altmann, 2010). In particular, the 
visual features of math notation (e.g., spacing, symbols, color) act as perceptual cues that can highlight information and 
influence the way we reason and act on notation. Incidentally, intentional changes to the presentation of notation, even 
very subtle changes, can be used as perceptual scaffolding to impact students’ performance on tasks such as simple 
arithmetic and equation solving.

Prominent Visual and Perceptual Grouping Mechanisms — Although multiple visual features may have no bearing 
on the mathematical meaning of notation, they can direct individuals’ attention towards structures within the notation 
and act as perceptual grouping mechanisms, impacting learners’ performance on problem solving. For example, visual 
features that are proximal, as opposed to distal, to one another are more likely to be perceptually grouped together 
by our visual systems according to the Gestalt principles of perceptual grouping (Hartmann, 1935; Wertheimer, 1938). 
For instance, the spatial proximity between symbols in expressions and equations impacts how individuals solve math 
problems. Individuals solve problems more quickly and accurately when the spatial proximity in notation supports 
the order of operations (e.g., 6*3 + 4). However, individuals struggle more to solve problems (i.e., taking more time to 
solve and making more errors) when the spatial proximity between symbols does not support the order of operations 
(e.g., 6 * 3+4). This finding is true for grade school and college students alike (e.g., Braithwaite et al., 2016; Gómez, 
Benavides-Varela, et al., 2014; Gómez, Bossi, & Dartnell, 2014; Harrison et al., 2020; Landy & Goldstone, 2007, 2010; 
Rivera & Garrigan, 2016). In fact, the effects of spatial proximity on students’ performance have been shown to increase 
with students’ age from grade two to six (Braithwaite et al., 2016), and do not decline among secondary students 
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(Harrison et al., 2020). These findings suggest that the reliance on spatial proximity as a perceptual grouping mechanism 
is pervasive across developmental stages as well as ranges in math knowledge.

In addition to the spatial proximity of symbols, several other visual features can also serve as attentional cues in 
math notation. For example, strategic coloring can be used as a perceptual grouping mechanism to support students’ 
generation of problem-solving strategies (Alibali et al., 2018). Alibali and colleagues (2018) found that fourth-grade 
students who received instructional materials that highlighted relevant features to encode with different colored ink 
than the rest of an equation during a practice session were more likely to generate correct problem-solving strategies 
and improve from pretest to posttest than their counterparts who received materials without highlighting or with 
irrelevant equation features highlighted (Alibali et al., 2018). Landy and Goldstone (2007), in a sample of college 
students, found the same effect by manipulating the alphanumeric proximity of terms within an expression to be 
congruent or incongruent with the order of operations (i.e., students performed better on problems such as “a + p * q + 
z = a + q * p + z” and worse on problems such as “r + s * b + c = r + s * b + c”). Together, this research demonstrates 
the robust effect of perceptual grouping mechanisms on problem solving in math for a wide range of students and ages, 
suggesting that the ways in which we reason about math notation is highly dependent on our visual perception.

Brackets as a Visual and Perceptual Grouping Mechanism — In arithmetic, brackets can be used in several ways. 
First, within math expressions, brackets typically signify grouping in which the math content in the group takes 
precedence over its surroundings based on the order of operations (e.g., in “10 ÷ (2 + 3)”). Second, brackets can be 
used superfluously to visually highlight the structural elements of an expression without changing the mathematical 
meaning of the expression (Gunnarsson et al., 2016). For example, when students write (6 + 4)

(5 + 3) , the brackets preserve the 
structure of the initial rational expression and highlight the relation between the numerator and the denominator of the 
fraction. In this case, like spatial proximity and color highlighting, superfluous brackets serve as a perceptual grouping 
mechanism that can prime students to attend to the HOO.

One explanation for why superfluous brackets could work as a visual grouping mechanism is that they create 
a common visual region within math expressions that draws students’ attention to a specific area of math notation 
(Landy & Goldstone, 2007). According to the common visual region principle, individuals tend to group together visual 
elements that are located within the same bounded visual region (Palmer, 1992). These visual regions can be demarcated 
using color shifts, visual separators, or, in the case of brackets, object boundaries. For instance, when seeing “(6 * 3) 
+ 4”, students tend to quickly group “(6*3)” together because those terms are bound together by brackets. In fact, an 
eye-tracking study by Schneider and colleagues (2012) showed that adults were drawn to notation presented within 
a pair of brackets. For example, when presented with two math expressions, “(3 – 2) + 4” and “4 + (3 – 2)”, adults 
spent more time fixating on “(3 – 2)” than “+ 4”, showing that superfluous brackets serve as perceptual cues to 
capture attention. Hoch and Dreyfus (2004) also found similar grouping and attention-directing effects of superfluous 
brackets. Eleventh-grade students solved math problems more efficiently with the presence of superfluous brackets (e.g.,
1 − 1

n + 1 − (1 − 1
n + 1 ) = 1

110 ) than without (e.g., 1 − 1
n + 3 − 1 + 1

n + 3 = 1
72 ). This finding suggests that superfluous brackets 

focus students’ attention and alert them to the possibility of like terms, leading them to more efficient problem-solving 
strategies.

Research on the use of superfluous brackets as a visual cue has been primarily conducted in classrooms (Gunnarsson 
et al., 2016; Hoch & Dreyfus, 2004; Marchini & Papadopoulos, 2011; Papadopoulos & Gunnarsson, 2018, 2020). Some of 
this research provides evidence that superfluous brackets positively impact students’ math performance through more 
accurate problem solving, higher performance on posttests, and better student understanding of the math expression’s 
structure (e.g., Hoch & Dreyfus, 2004; Marchini & Papadopoulos, 2011; Papadopoulos & Gunnarsson, 2018, 2020). 
However, other results have been contradictory. For example, Gunnarsson and colleagues (2016) found that the use 
of superfluous brackets did not enhance students’ performance as they learned the order of operations and even led 
to lower performance at posttest. However, that study consisted of a short intervention on the order of operations. It 
is possible that those findings might be impacted by the quality of the intervention, rather than by the presence of 
the superfluous brackets itself, motivating further work on the impact of superfluous brackets as a perceptual visual 
grouping mechanism.
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The Present Study
The current study aims to provide additional empirical evidence about how superfluous brackets affect student perform
ance with two important extensions of past work. First, this work explores the differential impacts of higher-order 
operator position on math performance. Second, much of the prior work has been conducted using paper and pencil 
tasks. Online learning and use of technology platforms in the math classroom have grown significantly and become 
more centric to education due to the COVID-19 pandemic, motivating us to explore the impact of superfluous brackets 
in problem sets implemented in an authentic online educational technology-based learning environment. Thus, our 
study aims to provide insights on how superfluous brackets may act as visual and perceptual support for students while 
solving problems in an online learning environment.

In this study, we compare performance on simple arithmetic problems among fifth- to seventh-grade students. 
Students completed math problems that were presented in one of six different ways varying the presence or absence of 
brackets and the position of the HOO. Based on previous findings on students’ weak structure sense, we hypothesize 
that when solving math problems related to the order of operations, students will be more likely to subscribe to the 
left-to-right tendency in computing. Thus, students will perform better when they see the HOO on the left, compared 
to when the operator is in the center or on the right side of the expression. In line with perceptual learning theory, we 
also hypothesize that superfluous brackets will act as a perceptual cue that primes students and draws their attention 
to the HOO; thus, students will perform better on problems with (as opposed to without) superfluous brackets. Finally, 
we hypothesize that students will perform the highest on math expressions that contain both, left side HOOs and 
superfluous brackets. Specifically, we pose the following research questions:

1. Does the position of a HOO (i.e., multiplication or division) impact student performance on simple arithmetic 
problems in an online homework assignment, as measured by student mastery speed and average response time?

2. Does the presence of superfluous brackets impact student performance, as measured by student mastery speed and 
average response time?

3. Is there an interaction between the effects of operator position and superfluous brackets on student performance, as 
measured by student mastery speed and average response time?

Method
We received approval from our university’s ethics committee for this research project.

Additionally, we pre-registered the study design and data analysis plan for this project on Open Science Framework 
(see Supplementary Materials).

Participants
We recruited students by advertising this study to existing fifth- to seventh-grade teacher-users of ASSISTments 
(Heffernan & Heffernan, 2014), the educational technology platform in which the study was deployed. Participating 
teachers assigned a link to the study activity to their class through the ASSISTments platform. Based on the information 
available in ASSISTments and in order to comply with the ASSISTments IRB, no participant demographic data is 
recorded or available on the platform. Therefore, we were not able to receive or report participants’ demographics data.

A total of 690 students from 24 middle school classrooms in the U.S. initially opened the assignment. Of those 
students, 19 students were immediately dropped from the sample because they did not complete the pretest and were 
therefore not assigned to a condition. An additional 71 students were dropped from the sample because they took an 
older and longer version of the pretest or had data not logged due to an error. A total of 600 students completed the 
three-item baseline assessment, were randomly assigned to a condition, and were included in our preliminary analysis 
examining mastery. Of the 600 students, 46 students quit the assignment before completion, meaning they did not reach 
content “mastery”. These students were included in preliminary analyses then dropped from the sample for the primary 
analysis. We then checked the distribution of average response time and mastery speed to identify outliers. Of the 554 
students who did reach “mastery”, 17 students had average response times well over five minutes per problem and 
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nine additional students had mastery speeds that exceeded three standard deviations from the sample mean; these 26 
students were dropped from the sample. These exclusions resulted in a final sample of 528 students for the primary 
analysis.

A post hoc power analysis in G*Power showed that a sample size of 528 students would provide 78.59% power to 
detect a small-to-medium effect size of f = .12 as detected in related previous work on perceptual cues in arithmetic 
problems (Harrison et al., 2020).

Study Procedures
We created this randomized controlled trial as a problem set in ASSISTments, an online tutoring system with free 
K-12 content that focuses on math (Heffernan & Heffernan, 2014). Teachers assigned the problem set as a class-wide 
assignment to their students to be completed individually in students’ web browsers using their own device as a 
30-minute in-class or homework activity.

Once students clicked the link to open the problem set, they completed a three-item baseline assessment on 
simplifying order-of-operations expressions (Figure 1). Each expression consisted of four numbers and three operators; 
further, the problems varied the position of the HOO (i.e., left: 6 / 3 + 2 – 1; center: 7 + 8 * 4 – 2; right: 7 + 2 + 5 * 3). 
Students did not receive any accuracy feedback on these problems.

Figure 1

Student View in ASSISTments for the Three-Item Baseline Assessment

After completing the baseline assessment, students were randomly assigned to one of six conditions, described below. 
Within condition, students simplified order-of-operations expressions that were presented in a randomized order within 
an ASSISTments’ Skill Builder, where the goal was to “master” the content by answering three questions correctly in 
a row. In the Skill Builder, once students correctly answered three problems in a row, they were considered to have 
“mastered” the topic and received a message indicating that they completed the assignment.

Study Design and Conditions
We used a 3 (HOO position: left, center, or right) × 2 (Presence of brackets: superfluous brackets vs. no brackets) 
between-subjects design consisting of six experimental conditions (Figure 2).

Figure 2

Example Problem Presentations Within the 3×2 Study Design
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Each condition varied in the placement of the HOO and the presence or absence of superfluous brackets in math 
expressions (Table 1). Importantly, the presence of the superfluous brackets did not alter the mathematical meaning of, 
or answer to, the math expressions in any conditions. Notably, it was mathematically valid to solve expressions in the 
brackets-left and no brackets-left conditions from left to right, whereas problems in the other four conditions required 
students to attend to the order of operations in order to correctly solve each problem. Additionally, the problems 
designed for each condition mirrored one another with the same terms and answers (e.g., in Figure 2, the simplified 
answer to the example expression is 32 in all six conditions).

Table 1

Problem Structures and Sample Problem by Condition

Condition Name Structure HOO Position Presence of Brackets Example

Brackets-Left *++ Left Yes (1 * 6) + 2 + 5

No Brackets-Left *++ Left No 1 * 6 + 2 + 5

Brackets-Center +*+ Center Yes 2 + (1 * 6) + 5

No Brackets-Center +*+ Center No 2 + 1 * 6 + 5

Brackets-Right ++* Right Yes 2 + 5 + (1 * 6)

No Brackets-Right ++* Right No 2 + 5 + 1 * 6

Materials
The problems used in this study were based on the Common Core Standards for fifth grade content on “Operations 
and Algebraic Thinking” (National Governors Association Center for Best Practices, 2010). Our team designed 49 
order-of-operations problems and adapted them for each of the described conditions. All problems consisted of four 
single-digit numbers (1 - 9) and three operators: one of the three operators was either multiplication or division and the 
two other operators were either addition or subtraction (e.g., Table 1). Single-digit numbers were evenly used across all 
problems in the problem set. Approximately half of the problem solutions were magnitudes under 20 (n = 26) and half 
were equal to, or over, 20 (n = 23).

Measures
Pretest Completion and Performance

ASSISTments recorded whether each student completed the pretest as a binary measure and calculated their perform
ance on the pretest as the number of correct answers across the three items.

Mastery Status

ASSISTments provided a binary measure of whether students reached “mastery” as defined by correctly answering three 
problems in a row. Students may have dropped out of the assignment before reaching mastery. This measure was used 
as the outcome in the preliminary analysis to check attrition rates by condition.

Mastery Speed

For each student that achieved mastery, the system recorded their assignment mastery speed, which was measured 
as the count of problems that a student saw (after the pretest) to successfully complete three problems in a row. For 
example, Figure 3 shows a problem in ASSISTments after a student answered the first two problems in the Skill Builder 
correctly. If the student were to answer the third problem correctly, their mastery speed would be three problems. 
However, if the student were to answer the third problem incorrectly, followed by submitting three correct responses in 
a row, their mastery speed would be six problems. In the context of this study, a slower mastery speed (i.e., solving more 
problems to get three problems correct in a row) is an indicator of higher error and lower math performance. Mastery 
speed has been used as an outcome measure of student performance in previous ASSISTments studies (e.g., Botelho et 
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al., 2015; Harrison et al., 2020; Walkington et al., 2019). Here, we consider students’ mastery speed to be a measure of 
their problem-solving accuracy.

Figure 3

Example of a Student’s View in ASSISTments in the No Brackets-Right Condition

Average Response Time

For each experimental problem in the ASSISTments Skill Builder, the system recorded the time from which the problem 
window opened until the student submitted the correct answer to the problem. Students’ response time for each prob
lem was summed and divided by the number of problems that they solved to calculate each student’s average response 
time per problem. Previous studies have explored response time as an outcome variable of student performance during 
math problem solving (Kellman et al., 2008; Landy & Goldstone; 2010; Mayer, 1982). In this study, we used average 
response time per problem as a proxy for efficiency to evaluate if students in one condition simplified math expressions 
faster than those in other conditions.

Approach to Analysis
Preliminary Analyses – Rate of Mastery by Condition

Prior to conducting primary analyses, we checked for differential mastery rates across conditions to see whether one 
condition may have been significantly more challenging for students to the point of not completing the assignment. 
Figure 4 shows the mean mastery rate by condition and Figure 5 shows the mean mastery rate by HOO Position.

Figure 4

Proportion of Students Who Achieved Mastery by Condition

Note. Error bars represent one standard error from the mean.
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Figure 5

Proportion of Students Who Achieved Mastery by HOO Position

Note. Error bars represent one standard error from the mean.

We then conducted a logistic regression to examine whether students were more likely to have mastered the assignment 
when assigned to a condition with superfluous brackets and/or a particular operator position (left, center, or right). The 
logistic regression model, controlling for pretest, was statistically significant, χ2(5, 593) = 26.29, p < .001 (Table 2). The 
model explained 10.3% (Nagelkerke R 2) of the variance in mastery and correctly classified 93.1% of cases. Presence of 
brackets was not associated with achieving mastery, OR = 2.49, 95% CI [-0.55, 2.38]; however, students who were in 
a right position condition were significantly less likely to achieve mastery compared to students who were in a left 
position condition, OR = 0.27, 95% CI [-2.33, -0.26]. Higher pretest scores did not predict the likelihood of achieving 
mastery and no interactions were significant.

Table 2

Logistic Regression Predicting Mastery by Condition

Condition Estimate SE OR z
Wald 

Statistic

95% CI

LL UL
(Intercept) 2.31** 0.57 10.03 4.04 16.32 1.19 3.42

Pretest correct 0.21 0.16 1.23 1.31 1.71 -0.10 0.52

Brackets 0.91 0.75 2.49 1.23 1.50 -0.55 2.38

Position- Center -0.55 0.57 0.58 -0.97 0.93 -1.67 0.57

Position- Right -1.30** 0.53 0.27 -2.45 5.99 -2.33 -0.26

Brackets * Position- Center 0.15 0.96 1.17 0.16 0.03 -1.74 2.04

Brackets * Position-Right 0.57 0.91 1.76 0.62 0.39 -1.12 2.36

*p < .05. **p < .01. ***p < .001.

Primary Analyses

To answer our first and second research questions, we investigated how the position of the HOO and the presence of 
superfluous brackets may have separately impacted students’ performance among those who completed the problem 
set. Using the analytic sample of 528 students, we compared differences across conditions in students’ mastery speed 
and average response time as two indicators of student performance. Specifically, we conducted a Poisson regression 
to predict mastery speed and a linear regression to predict average response time. We used students’ pretest scores 
as a covariate to control for prior knowledge. We chose to conduct a Poisson regression for mastery speed since the 
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variable represents count data. We did not use a multilevel model accounting for the nesting of students in teachers (n 
= 20) because the intraclass correlation was only 0.02, well below the 0.07 threshold that is recommended for the use 
of hierarchical linear modeling (Lee, 2000; Niehaus et al., 2014). The HOO position predictor was dummy coded, with 
the HOO in the center position as the reference group to allow comparisons to both left and right positions. We used R 
Studio with the lme4 package for all analyses.

For each analysis, we analyzed the main effect of operator position (left and right compared to the center), the 
main effect of superfluous brackets (superfluous brackets vs. no brackets), and two Operator Position * Presence of 
Bracket interactions. The main effect of operator position (left and right compared to center) revealed whether and 
how the position of the HOO (i.e., multiplication or division) in math expressions impacted student performance on 
simple arithmetic. The main effect for the presence of brackets (superfluous brackets vs. no brackets) informed us 
whether and how superfluous brackets impacted student performance. Lastly, the interactions indicated whether there 
was an interaction between the impact of operator position (left and right compared to the center) and the presence of 
superfluous brackets on student performance.

Results

Descriptive Statistics
All students who were included in the primary analyses achieved “mastery” (i.e., answering three problems correctly in 
a row) at some point in the study assignment (M = 4.49 problems, SD = 2.66 problems). See Table 3 below for details 
on numbers of students, average pretest score, average mastery speed, and average response time for the overall sample 
and by condition. Figure 6 shows average mastery speed by condition.

Table 3

Descriptive Statistics on Student Performance by Condition

Condition n
Average Pretest 

Performance (SD)
Average Mastery 

Speed (SD)
Average Response 

Time (SD)

Overall 528 2.15 (0.93) 4.49 (2.66) 38.57 (34.31)

No Brackets-Left 78 2.28 (0.91) 3.68 (1.55) 34.29 (26.23)

Brackets-Left 109 2.15 (0.93) 3.92 (2.13) 36.15 (30.90)

No Brackets-Center 83 2.08 (0.90) 5.17 (3.17) 35.04 (29.37)

Brackets-Center 99 2.18 (0.90) 3.66 (1.53) 40.13 (37.95)

No Brackets-Right 77 2.20 (1.01) 5.60 (3.64) 46.84 (41.29)

Brackets-Right 82 2.02 (0.96) 5.29 (2.82) 39.77 (37.58)

Note. Average Pretest Performance and Average Mastery Speed are reported by problem count. Average Response Time is reported in seconds.

Figure 6

Mean Mastery Speed as a Function of Condition

Note. Error bars represent one standard error from the mean.
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Main Effects Predicting Mastery Speed
To first examine the effects of brackets and HOO position on students’ mastery speed, we conducted a Poisson 
regression controlling for students' pretest performance, with the center position as the reference group (Table 4, 
Model 1).

Table 4

Main and Interaction Effects of Two Predictors on Mastery Speed

Predictor

Model 1 Model 2

β SE t β SE t
Intercept 1.74*** 0.06 29.02 1.83*** 0.06 28.83

Pretest -0.10*** 0.02 -4.54 -0.09*** 0.02 -4.28

Brackets -0.12** 0.04 -2.99 -0.34*** 0.07 -4.77

Position-Left -0.11* 0.05 -2.22 -0.32*** 0.08 -4.29

Position-Right 0.24*** 0.05 4.90 0.11 0.07 1.66

Left*Brackets 0.26** 0.10 2.70

Right*Brackets 0.40*** 0.10 3.87

The results revealed a significant effect of superfluous brackets presence on students' mastery speed, B = -0.12, p = .002** 
(Figure 7). Specifically, students who did not see superfluous brackets had slower mastery speeds than those who saw 
superfluous brackets.

Figure 7

Mean Mastery Speed as a Function of Brackets Condition

Note. Error bars represent one standard error from the mean.

Second, the results revealed a significant effect of HOO positions on students' mastery speed. Specifically, the mastery 
speed of students who solved expressions with the HOO on the left was significantly lower (i.e., quicker) compared to 
those who solved problems with the operator in the center (B = -0.11, p < .05). Further, students who solved problems 
with the HOO in the center had significantly quicker mastery speeds than students with the HOO on the right (B = 0.24, 
p < .001; Figure 8).
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Figure 8

Mean Mastery Speed as a Function of HOO Position Condition

Note. Mean number of problems students completed to reach mastery as a function of HOO position condition with error bars reporting one standard 
error of the mean.

Interaction Effects Predicting Mastery Speed
Next, to examine whether the effects varied by condition, we added two interaction terms with bracket and position to 
the model (Table 4, Model 2). Results indicate significantly different patterns of effects with and without brackets in the 
center position, The first interaction of brackets by left position was statistically significant (B = 0.26, p = .01). As shown 
in Figure 9a, students in the two left conditions performed similarly, regardless of the presence or absence of brackets. 
While the center position was not related to higher mastery speed compared to the left position in the presence of 
brackets, the students who were in the center-no brackets condition did perform significantly worse (higher mastery 
speeds) than students in the left position conditions and the brackets-center position.

Figure 9

Interaction Graphs of Average Mastery Speed by (a) Left and (b) Right Position and Presence of Brackets

Note. Reference group is Center position.
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The second interaction comparing brackets and no brackets and the center and right HOO position on mastery speed 
was also statistically significant (B = 0.40, p = .001). Students who were in the brackets center condition had significantly 
lower mastery speeds (indicating higher performance) compared to the right positions, but students’ mastery speeds in 
the no brackets center condition did not significantly differ from students in both of the right conditions (Figure 9b).

Additionally, after including the two interaction terms pretest performance remained a significant predictor of 
mastery speed (B = -0.09, p < .001), where students who performed higher on the pretest demonstrated quicker mastery 
speeds. Further, the main effects for brackets and the left compared to center position remained significant (p < .01); 
however, the main effect for the center vs right position was no longer significant (p = .09).

Main Effects Predicting Average Response Time
Figure 10 shows the average response times per condition.

Figure 10

Descriptive Graph of Average Response Time Per Problem by Condition

Note. Mean number of seconds students took to respond to each problem by condition with error bars reporting one standard error of the mean on 
each side.

Next, we conducted a regression predicting average response time and controlling for students' pretest performance 
(Table 5, Model 3).

Table 5

Main and Interaction Effects of Two Predictors on Average Response Time

Predictor

Model 3 Model 4

β SE t β SE t
Intercept 238.80 789.70 0.30 601.50 860.40 0.70

Pretest -69.60 276.20 -0.25 -46.20 277.10 -0.17

Brackets 379.50 518.30 0.73 -387.80 879.40 0.44

Position-Left 327.80 616.80 0.53 -116.00 932.90 0.12

Position-Right 398.50 641.90 0.62 -440.10 934.90 -0.47

Left*Brackets 818.00 1289.20 0.66

Right*Brackets 1590.40 1289.20 1.23

First, there was no significant effect of HOO position on students' average response time, both p’s > .50. Similarly, there 
was no significant effect of superfluous brackets on average response time, p = .46. Lastly, there was no significant 
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interaction effect between the position of HOO (both left and right compared to center) and the presence of superfluous 
brackets on students' average response time, both p’s > .20 (Table 5, Model 4). Pretest performance was not a significant 
predictor of average response time, p = .87.

Discussion
The goal of this study was to explore whether the position of higher-order operator and the presence of superfluous 
brackets within math expressions may separately and simultaneously impact student performance on order-of-opera
tions problems in an online tutoring system. Three notable findings emerged from this study. First, students were more 
likely to not complete (i.e., “not master”) the assignment if they were in a condition that had the HOO on the right, 
suggesting that this presentation of arithmetic expressions may have posed more challenges to students during problem 
solving than the other position conditions. Second, main effects show that, on average, students who were assigned 
conditions where the HOO was in the center of the expressions had slower mastery speeds than when it was on the 
left, but quicker mastery speeds than students who solved expressions with the HOO on the right. Further, students 
who saw expressions with brackets tended to have quicker mastery speeds than those who did not see brackets. Third, 
interaction effects revealed that these main effects were largely driven by the presence of superfluous brackets on 
the center position which moderated the impacts of HOO position on mastery speed. Among students in the two 
conditions with the HOO in the center, students who solved expressions with superfluous brackets achieved mastery 
more quickly (comparable to students who were in the left position conditions) than students who solved expressions 
without brackets (comparable to the right position conditions).

Right Operator Position Impacted Students’ Assignment Completion
Based on previous work on perceptual cues within ASSISTments (Harrison et al., 2020), we anticipated that operator 
position and superfluous brackets would impact students’ performance but not their completion rates on an online 
homework assignment. However, preliminary analyses found that students who were assigned to the right conditions 
were less likely to reach mastery compared to those in the left conditions. These results show that the position of HOO 
did impact students’ likelihood of achieving mastery, or generally, completing the assignment. This finding suggests that 
the impacts of operator position may be greater than anticipated or evidenced in prior work by impacting students’ 
participation in an assignment and not just their performance.

In our pre-registration, we predicted that the brackets-left condition would be the easiest for students to solve 
arithmetic problems, and that the no brackets-right condition would be most difficult, as indicated by students’ higher 
(i.e., slower) mastery speeds. The logistic regression showing that students assigned to the right position condition were 
significantly less likely to complete the assignment provides support for this hypothesis. We interpret this finding to 
mean that the position of the HOO may be very influential in how students reason about math; in particular, solving 
expressions may seem more difficult when the position of the HOO is on the right side of the expression. One plausible 
explanation for students dropping out more often in this condition may be that they became frustrated by the difficulty 
of the assignment or getting more problems incorrect.

Since the primary analyses conducted only included students who did achieve mastery in the study activity, the 
findings on mastery speed and average response time need to be interpreted with the context that there was differential 
attrition between our six conditions. However, we contend that by dropping students who did not achieve mastery from 
the analytic sample, the findings may actually present a more conservative estimate of how the position and presence 
of perceptual cues within arithmetic expressions impact student performance. Future research should explore item-level 
data to better understand factors such as time on task, accuracy of initial responses, and students’ behaviors while 
problem solving to unpack the mechanisms behind why students might have dropped out of the assignment before 
reaching mastery.
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Main Effects of Higher-Order Operator Position on Students’ Mastery Speed
We predicted that solving math expressions with the HOO on the left and expressions with superfluous brackets 
would lead to (a) quicker mastery speeds and (b) quicker response times than solving expressions with the operator 
in the center or on the right and expressions without superfluous brackets. The main effect result supports the first 
hypothesis: seeing math expressions with the HOO on the left was, on average, related to quicker mastery speeds (i.e., 
higher accuracy rates) than the center. The presence of superfluous brackets also independently impacted students’ 
mastery speed during simple arithmetic. However, these variables did not significantly predict response times. Students 
had comparable response times across conditions, suggesting that neither operator condition nor superfluous brackets 
impacted students’ problem-solving speed.

The main effect finding that HOO position impacted student performance aligned with previous research showing 
that students have a left-to-right tendency during math problem solving (Banerjee & Subramaniam, 2005; Blando et al., 
1989; Gunnarsson et al., 2016; Kieran, 1979). For instance, Kieran (1979) found that when solving 5 + 2 * 3, students 
tend to complete the addition operation first; however, when solving 4 * 2 – 3, students came to the correct answer 
by following their tendency to compute from left to right (Kieran, 1979). This strong adherence to the left-to-right 
principle in computing may explain the differences in mastery speed that we saw in our study. In the two HOO-left 
conditions, the math expressions were presented in ways that benefited students' left-to-right tendency: students did 
not have to effortfully attend to the problem’s structure or the order of operations of expressions to reach the correct 
answer, leading to fewer errors and higher accuracy during problem solving. On the other hand, students who solved 
expressions with the HOO on the right consistently had the slowest mastery speeds, regardless of superfluous brackets 
(e.g., 4 + 7 + 2 * 5, 3 + 8 + (2 * 7)). In these two HOO-right conditions, the presentation of math expressions required 
students to notice the problem’s structure and inhibit their left-to-right tendency in order to answer correctly, leading to 
more errors and lower accuracy. This is especially notable as the students in the no brackets-right condition who were 
in this analytic sample were likely a higher performing subset of those initially assigned to this condition, as students 
in the no brackets-right condition were more likely to drop out of the study before achieving mastery or completing the 
assignment.

This study advances research on the roles of perceptual factors in math notation by isolating the effect of higher-
operator position on students’ performance. While the effects of superfluous brackets and HOO position on student 
performance are much smaller than we anticipated based on prior work (Harrison et al., 2020), this finding suggests 
that varying the positions of HOOs and presence or absence of superfluous brackets may provide noticeable differences 
in perceptual structures that affect students’ performance in the context of our study. Although previous research 
has demonstrated the left-to-right tendency in problem solving (e.g., Banerjee & Subramaniam, 2005; Blando et al., 
1989; Gunnarsson et al., 2016; Kieran, 1979), to the best of our knowledge, no previous study had strategically tested 
whether and how HOO position impacts different aspects of student performance. As we found that students who 
solved problems with the HOO on the right performed significantly worse than those in the left and center conditions, 
our study provides empirical evidence that students have a strong tendency to solve math problems from left to right. 
This finding contributes to the literature on students’ weak structure sense and may have implications for classroom 
instruction to identify and support students who tend to solve problems from left to right.

Superfluous Brackets in the Center Operator Position Increase Performance
The most notable finding is that the presence of superfluous brackets moderated the effect of HOO position, specifically 
when students solved math expressions with the operator in the center. While students, on average, demonstrated the 
quickest mastery speeds in the HOO-left conditions, students in the center position with brackets condition performed 
comparably well to the two HOO-left conditions, suggesting that superfluous brackets may increase students' accuracy 
on problems when the HOO is in the center. Conversely, students in the no brackets-center condition had comparable 
mastery speeds to students in the HOO-right conditions, suggesting that the absence of brackets with the HOO in the 
center posed challenges to students.

One possible interpretation of these results is that position of HOO might be a type of visual and perceptual feature 
that works congruously with the left-to-right calculating tendency to impact students’ problem solving: left-sided 
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HOOs facilitate higher accuracy, while center- and right-sided HOO (without brackets) elicit more errors. Students 
were highest performing when they were able to apply a left-to-right solving strategy. In cases when they could not 
(i.e., center and right conditions), their performance (mastery speed) dropped. The exception to this trend was for 
students who saw brackets in the center position, suggesting that in cases when students could not apply a left-to-right 
solving strategy, the superfluous brackets may have naturally and visually grouped the numbers to prevent a left to 
right calculation, or shifted their attention and helped them identify the groupings to apply the first steps for problem 
solving. The brackets could have prevented students from compulsively performing left-to-right calculations by visually 
breaking up the structure of the math expressions. Specifically, brackets around the center terms may be the most 
impactful because, in that position, it breaks up the structures into three distinct parts, where the brackets naturally 
block the flow of left to right computations (i.e., 1+ (7 * 5) – 4).

When solving order-of-operations problems, students seem to rely on both HOO position and superfluous brackets 
presented in the expressions; however, this work suggests that operator position, particularly when placed in the center, 
may play a strong attention-guiding role. Aligned with our findings, HOO position seemed to be a salient factor 
that impacted students’ performance when calculating left to right. Superfluous brackets, while significant, specifically 
seemed to impact students’ performance when the operator position was in the center. Having brackets on the left or 
right did not seem to impact performance. Thus, if students relied on left to right calculations, they would use more 
inaccurate problem solving when the operators were not located on the left side of the expressions. However, when the 
operators were in the center of the expressions, the presence of the brackets could have helped students attend the HOO 
first, breaking up the expression into chunks, and helping to facilitate more accurate problem solving.

Harrison and colleagues (2020) suggested that perceptual features may impact student performance in a hierarchical 
structure. In particular, the operator position may act as a first-order perceptual structure, while cues such as physical 
spacing between symbols in expressions might act as a second-order perceptual cue to influence how students interpret 
and act on math notation (Harrison et al., 2020). Aligned with this perspective, we posit that students may have attended 
to operator positions first, with a compulsion to compute from left to right. The presence of brackets may have helped 
guide students' attention to the operator in the center, nudging them to notice the order-of-operations structure of 
the problem, and facilitating more accurate problem solving. Consequently, students may be more likely to notice 
superfluous brackets when they are used to group symbols that are not on the left-most side of expressions and break 
up this natural flow. While we cannot be certain of the mechanism of this finding, the helpful effects of superfluous 
brackets in the center of the expressions is consistent with prior studies indicating the usefulness of brackets to help 
students see structure and support math performance (e.g., Hoch & Dreyfus, 2004; Marchini & Papadopoulos, 2011).

Another alternative explanation of this finding is that, for students who have not yet conceptually mastered the 
order of operations, they may have memorized a simpler procedural rule that parentheses must be computed before 
other operations (i.e., PEMDAS). Therefore, it is plausible that the brackets may not be serving solely as a visual 
perceptual cue, but rather students could be relying on the PEMDAS (or BEDMAS) rule that parenthesis must be 
calculated first as a foolproof way for students to perform simple procedures without understanding. However, this 
explanation is challenged by the finding that, in the case of HOO-left and HOO-right expressions, the presence of 
brackets did not help students perform more accurately.

Performance vs. Learning: Creating Desirable Difficulties
The findings from this study demonstrate how operator position and superfluous brackets may impact students’ partic
ipation in, and performance on, order-of-operations problems in an online homework environment. Importantly, this 
work provides considerations for designing stand-alone assignments: using problems with left-most HOO may increase 
students’ performance while using right-most HOOs in expressions may decrease students’ likelihood of finishing the 
assignment. We posit that variations in perceptual features like HOO position and superfluous brackets (particularly 
in the center position) may help students quickly infer which operations to address in a given expression, similar to 
creating semantic alignment in the structure of word problems (Gros et al., 2020). Based on the word structure of 
problems, students map connections to the underlying mathematical properties: for example, problems stating to “place 
[objects] in [locations]'' create analogies for using division (Bassok, 2001). This quick encoding of information may lead 
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to increased performance solving problems. However, we did not administer a posttest so we are unable to draw any 
conclusions about how completing the assignment with perceptual cues like brackets in varying positions may transfer 
to students’ strategies and performance in subsequent problem solving. We consider this study to be a first step to 
explore long-term or transfer effects of using perceptual cues in instructional materials. For example, are the perceptual 
cues that increase performance also those that promote learning, problem-solving flexibility, and efficiency?

Several decades of research on desirable difficulties has shown that learning conditions which are more difficult 
in the moment and decrease individuals’ performance improve long-term learning and retention (Bjork, 1994; Bjork 
& Bjork, 2015). For example, perceptually (Diemand-Yauman et al., 2011) or conceptually (in terms of organizational 
structure, McNamara et al., 1996) creating conditions that decrease students’ in-the-moment fluency encourages them 
to pause before engaging with the material. Work on algebraic equivalency has also shown that students who pause 
longer before acting on a problem show higher problem-solving efficiency than their peers who do not pause to think 
before solving (Chan et al., 2022). More broadly, instructional and study tactics such as varied practice (Smith et al., 
1978) and interleaving (Kornell & Bjork, 2008) help learners develop flexibility across time and context to improve 
problem solving. Interleaved and varied practice train learners to identify distinguishing problem features like the way 
that perceptual cues can help students see important structures of notation that may influence their decision on which 
strategy to apply to a problem.

Taken together, we consider the possibility that variations in expression structures and perceptual cues that lend 
themselves to higher problem-solving performance (i.e., left-most HOO, superfluous brackets) may not be the same 
features that lead to long-term learning, retention, and flexibility or efficiency. Instead, more difficult mathematical 
structures or the presence or absence of perceptual cues that challenge students to pause and reflect on procedural or 
more conceptual rules like the order of operations before acting (i.e., right-most HOO, no superfluous brackets in center, 
incongruent spacing) may seem counterintuitive but could create desirable difficulties and promising interventions for 
improved long-term outcomes. This area of inquiry is a focus of our future work.

Limitations and Future Directions
This study had multiple limitations. First, the differential attrition (i.e., students who achieved mastery was different by 
condition) can be seen as problematic as the attrition was not random. However, although more students were dropped 
from the analytic sample in the no brackets-right condition, the findings of this study are notable, especially given that 
the negative effects of no brackets-right were still present, even when dropping those who did not achieve mastery.

Second, given the current data, it is difficult to specify who is impacted by superfluous brackets and HOO position 
and when. While we intentionally recruited teachers of incoming fifth- to seventh-grade students, the online platform 
used to deploy the study does not permit collecting any individual participants’ demographic information (e.g., gender, 
race, age, grade, in-person vs. remote learning status) due to privacy concerns. While we acknowledge that the lack 
of demographic information is not ideal and limits our ability to understand individual differences, it is a tradeoff 
for using open educational platforms like ASSISTments for conducting educational research at scale. Further, teachers 
were aware of the content targeted in the study and may have assigned the content to students in other grades if 
the content was appropriate for their knowledge levels (e.g., in advanced lower grades or remedial higher grades). 
Additionally, conducting this study in an online platform provided ecological validity by testing how these experimental 
manipulations impacted students’ performance on an online class or homework assignment.

Third, the focal dependent variable in this study, mastery speed, is specific to the type of problem set built in 
ASSISTments. As a result, these findings are not directly generalizable to other online tutoring platforms or contexts. 
However, estimating treatment effects on students’ mastery speed provides suggestions for another measure for accura
cy and a unique analysis of how perceptual cues may impact students’ performance at a granular level.

Looking ahead, future research may consider collecting more demographic information from participants to control 
for individual differences among students that may affect their susceptibility to perceptual cues. This approach would 
help uncover when, and for whom, perceptual scaffolding may be the most effective. Further, this approach may be 
most effective when paired with other theoretical perspectives that explain cognitive and developmental factors of 
math performance and learning. Additionally, future research may consider replicating this work with students in 
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classrooms or using additional methodologies to tease out the mechanisms and practical significance of presenting and 
implementing perceptual supports to facilitate enhanced problem solving in everyday math learning. Current work 
utilizing eye tracking is underway by our team to identify whether students who are presented with brackets do in 
fact look at the brackets and HOO first or fixate longer within expressions in various positions. This approach can help 
confirm or challenge more procedural or perceptual/attentional explanations for why students demonstrate improved 
performance with brackets in the center position.

Implications and Practical Contributions
Broadly, this study adds to the growing body of literature on the importance of perceptual grouping, and variations in 
structures for developing structure sense and reasoning in mathematics (Kirshner, 1989; Landy & Goldstone, 2007, 2010) 
and the potential benefits of using superfluous brackets in simplifying expressions (Hoch & Dreyfus, 2004; Marchini 
& Papadopoulos, 2011). Our study suggests that superfluous brackets may be a helpful perceptual cue for students, 
especially when the HOO is placed in the center. Superfluous brackets may provide additional support to students when 
learning order of operations, thus adding more to the literature about how presenting superfluous brackets in different 
positions of math expressions may serve as an effective intervention to support students during problem solving.

These findings support that adding visual information in notation, such as manipulating the position of HOOs 
and adding superfluous brackets, may act as perceptual supports that can positively influence students’ reasoning and 
performance in math. Our findings also highlight the importance of helping students develop structure sense in math 
learning and identifying students who may be underperforming due to a left-to-right solving tendency. Regarding 
the implications of this work, instructors and educators may be able to intentionally make changes to the visual 
presentation of notation, such as adding superfluous brackets, to guide students' attention to relevant features of math 
problems, lead them to correct solution strategies, and enhance their performance on tasks. Since students tend to solve 
math problems from left to right, which might lead to inaccurate solutions, it may be useful for teachers to utilize 
superfluous brackets in the center position to improve students' weak structure sense in arithmetic by helping inhibit 
their compulsion to compute from left to right. A second possible way to support students' development of structure 
sense may be to introduce them to superfluous brackets early and slowly in instructional practice. As students first 
learn how to solve problems with HOOs in an expression (e.g., 2 + (1 * 6) + 3), guiding them to notice the higher 
order operator by using superfluous brackets or instructing them to put the brackets around the multiplication or 
division to break up structure and signs might help students gradually build an understanding that these brackets 
serve as a visual cue to highlight important elements of math problems. From frequent exposure to superfluous 
brackets as a perceptual cue, students might better understand the importance of finding significant elements within 
a math expression and comprehending the overall structure of a problem prior to solving. As students become more 
comfortable with simplifying order-of-operation expressions with different structures, the need for those supports may 
become less necessary.

Conclusions
The current study applies and integrates work from cognitive science, math education, and educational technology to 
explore the impact of superfluous brackets and HOO position on students’ math performance simplifying expressions. 
We found that, generally, students tend to demonstrate the highest performance on expressions with the HOO on the 
left but performance decreases as the HOO moves to the right. However, we found that adding superfluous brackets 
in the center position supports learning, while having brackets on the right or left does not provide additional impacts 
for students. Overall, this study highlights the importance of providing variation in subtle structural and perceptual var
iations in math notation, showing that the position and presence of perceptual grouping structures, such as superfluous 
brackets, impacts students’ completion and performance on online assignments.
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