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Abstract
While symbolic number processing is an important correlate for typical and low mathematics achievement, it remains to be 
determined whether children with high mathematics achievement also have excellent symbolic number processing abilities. We 
investigated this question in 64 children (aged 8 to 10), i.e., 32 children with persistent high achievement in mathematics (above the 
90th percentile) and 32 average-achieving peers (between the 25th and 75th percentile). Children completed measures of symbolic 
number processing (comparison and order). We additionally investigated the roles of spatial visualization and working memory. High 
mathematics achievers were faster and more accurate in order processing compared to average achievers, but no differences were 
found in magnitude comparison. High mathematics achievers demonstrated better spatial visualization ability, while group 
differences in working memory were less clear. Spatial visualization ability was the only significant predictor of group membership. 
Our results therefore highlight the role of high spatial visualization ability in high mathematics achievement.
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Large individual differences exist in children’s acquisition of mathematical abilities (e.g., Dowker, 2005). Many studies 
have tried to unravel what cognitive factors contribute to these individual differences (e.g., Peng et al., 2016; Schneider 
et al., 2017). In particular, the study of domain-specific and domain-general cognitive factors that underlie mathematics 
achievement in typically developing children (e.g., Lyons et al., 2014) and in children who fall on the lower end 
of the mathematics achievement spectrum, that is children with dyscalculia (e.g., Schwenk et al., 2017; Swanson & 
Jerman, 2006), has greatly advanced (De Smedt, 2022, for a recent review). Surprisingly little is known about the 
cognitive abilities of individuals who excel in mathematics. Myers et al. (2017) reported in their systematic review 
on high mathematics achievement that only 40 studies have addressed this topic. The vast majority of these studies 
concentrated on adolescents and adults, with only very little attention to children. Nearly all of these studies focused 
on domain-general cognitive abilities, such as spatial ability or working memory, and their roles in high mathematics 
achievement. Little or no studies have investigated the role of domain-specific cognitive abilities, such as symbolic 
number processing, in the mathematical performance of individuals with high mathematics achievement. While these 
symbolic number processing skills have emerged as critical predictors of mathematical performance in the typically 
developing range (Schneider et al., 2017) and at the lower end of the mathematical ability spectrum, i.e. in dyscalculia 
(Schwenk et al., 2017), it remains to be determined whether this can also be observed at the high end of the mathematics 
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achievement distribution. Studies on symbolic number processing in high mathematics achievement would allow us to 
answer the question whether the association between symbolic number processing and mathematics achievement can 
be generalized to the higher end of the mathematical ability distribution. These studies also help us to increase our 
limited understanding of the cognitive characteristics of children with high mathematics achievement.

In the current study, we therefore examined whether young children with high mathematics achievement excel in 
their basic ability to process the magnitude and order of symbolic numbers. We also examined the role of spatial ability 
and working memory — two domain-general cognitive abilities that have been linked with individual differences in 
mathematics achievement (Gilligan et al., 2017; Peng et al., 2016). While spatial ability and working memory already 
emerged as potentially important contributors to high mathematics achievement in adolescents and adults, their role has 
been much less investigated in young children (Myers et al., 2017).

Number Processing Ability
There are two ways of thinking about numbers: On the one hand, they describe magnitude (i.e., cardinality), and, on 
the other hand, they represent order (i.e., ordinality) (e.g., Merkley & Ansari, 2016). These two aspects have already 
been differentiated in the numerical cognition literature for a long time (Gelman & Gallistel, 1978). They are considered 
foundational skills as both number-related processes have been found to be important for the development of more 
complex mathematical abilities, such as arithmetic (Goffin & Ansari, 2016) and general mathematics achievement 
(Schneider et al., 2017).

Numerical magnitude processing refers to people’s intuition about the quantity of numbers. In recent decades, there 
has been an increased interest in the role of numerical magnitude processing for explaining individual differences in 
mathematics achievement (De Smedt et al., 2013; Schneider et al., 2017). The study of processing numerical magnitude 
is frequently done by asking participants to compare symbolic (i.e., Arabic numerals) or non-symbolic (i.e., dot arrays) 
magnitudes (Lyons et al., 2014). Symbolic magnitude comparison tasks are thought to provide a measure of cardinality 
(i.e., knowing that the Arabic symbol “6″ refers to six items; Goffin & Ansari, 2016; Lyons & Beilock, 2011). In such 
magnitude comparison tasks, participants are visually presented with two magnitudes and are instructed to indicate 
the numerically larger one. Both symbolic (e.g., De Smedt et al., 2009) and non-symbolic (e.g., Chen & Li, 2014) magni
tude comparison abilities have been linked with individual differences in mathematics achievement (Schneider et al., 
2017, for a meta-analysis). However, symbolic magnitude comparison was significantly more strongly associated with 
mathematics achievement compared to non-symbolic magnitude comparison. Furthermore, a meta-analysis by Schwenk 
et al. (2017) revealed that children with dyscalculia particularly show deficits on measures of symbolic magnitude 
comparison (rather than on non-symbolic measures). However, it remains unclear whether, conversely, children with 
high mathematics achievement excel in their ability to compare symbolic magnitudes.

Another fundamental and distinct aspect of symbolic number processing is the processing of numerical order or 
ordinality. Numerical order refers to each number’s position in the counting sequence (e.g., number 7 comes before 8, 
but after 6) (Brannon & Van de Walle, 2001). This is usually investigated via symbolic numerical order tasks, where 
participants have to determine whether a sequence of (three) symbolic numbers is ordered or non-ordered. Several 
studies in typically developing children have provided converging evidence for the relationship between symbolic order 
processing tasks and mathematics achievement (Goffin & Ansari, 2016; Lyons & Ansari, 2015; Lyons et al., 2014). 
Moreover, children with dyscalculia are impaired in their ability to process symbolic numerical ordinal relations (e.g., 
Kaufmann et al., 2009; Morsanyi et al., 2018; Rubinsten & Sury, 2011). Again, it is unclear whether, conversely, children 
with high mathematics achievement excel in their ability to process symbolic order.

Symbolic numerical magnitude comparison and symbolic numerical order processing are correlated (Lyons et al., 
2014), yet both number-related processes have been found to explain unique variance in (typical) mathematics achieve
ment (e.g., Goffin & Ansari, 2016). Interestingly, it has been observed that symbolic numerical magnitude comparison 
and symbolic numerical order processing relate differently to mathematics achievement across development: The 
predictive power of symbolic numerical order processing for mathematics achievement has been shown to increase 
across development, while that of symbolic numerical magnitude comparison decreases (Lyons et al., 2014; Sasanguie & 
Vos, 2018).
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What explains the association between our understanding of number and mathematics achievement? Mathematics 
is considered a hierarchical subject, meaning that the concepts and skills, such as our understanding of number, that 
we acquire early in development are considered as foundational for learning more complex mathematical skills. An 
understanding of symbolic numbers and their relations is therefore assumed to positively contribute to the acquisition 
of advanced mathematics (Jordan et al., 2009). When learning arithmetic, symbolic number competencies might facilitate 
the transition from more elementary calculation strategies, such as counting, to more advanced ones, such as decompos
ing a calculation problem into smaller problems (e.g., Booth & Siegler, 2008). It has also been observed that basic number 
processing scaffolds the semantic storage and retrieval of arithmetic facts from long-term memory, even in adults (e.g., 
Butterworth et al., 2001). Cognitive models of arithmetic fact organization and retrieval (e.g., Campbell, 1995) have also 
attributed an important role to number processing, as these models have indicated that the organization of these facts 
in long-term memory is based on magnitude. An understanding of ordinal relations has been suggested to improve our 
understanding of general arithmetic principles (e.g., understanding n + 1 and n - 1; Lyons & Beilock, 2011), which might 
lead to the use of more efficient and sophisticated calculation strategies.

The widespread idea of a critical role of symbolic number processing for mathematical development, both in 
typical development and in dyscalculia, leads to the straightforward yet untested prediction that excellent mathematical 
abilities should coincide with excellent basic number processing skills. Surprisingly, the number processing abilities 
of individuals with high mathematics achievement have been very rarely investigated. Castronovo and Göbel (2012) 
examined the impact of being enrolled in a math-intensive education on the number processing ability of adults (aged 
19 to 37 years). These authors observed no association between performance on a non-symbolic magnitude comparison 
task and the level of math education. However, high mathematics achievement was related to better performance on the 
symbolic magnitude comparison task.

Kroesbergen and Schoevers (2017) investigated 8-10-year-old children’s symbolic and non-symbolic magnitude 
comparison abilities. The achievement groups included in their study were defined based on children’s performance 
on a curriculum-based mathematics test (CITO). Typical mathematics achievement was defined as a score between 
the 20th and 80th percentile. High mathematics achievement was defined as a score above the 80th percentile. No 
significant differences were found between the achievement groups on the symbolic and non-symbolic magnitude 
comparison tasks. It should be noted that the criterion for high mathematics achievement used by Kroesbergen and 
Schoevers (2017), i.e., a score above the 80th percentile, was rather lenient, especially when compared to other studies on 
individuals with high mathematics achievement (Myers et al., 2017). It remains to be determined whether similar results 
will be obtained when more stringent selection criteria are used. Additionally, it remains to be seen whether this pattern 
of findings changes when symbolic order processing is considered. Including symbolic numerical order processing 
is especially relevant considering that it has been found to be an increasingly important predictor of mathematics 
achievement across the higher grades of primary school (Lyons et al., 2014).

Against this background, the current study focused on the symbolic number processing abilities of children who 
demonstrate high mathematics achievement in primary school. In contrast to the previous studies that focused only on 
the magnitude component of number, we investigated if a high ability to process numerical magnitude and order are 
both characteristics of high mathematics achievement.

Domain-General Cognitive Correlates of High Mathematics Achievement
Domain-general cognitive factors, such as spatial ability (Gilligan et al., 2017) and working memory (Peng et al., 2016), 
have also emerged as important contributing factors to individual differences in mathematics achievement. Furthermore, 
these factors have been identified as potential contributors to high mathematics achievement. As summarized by Myers 
et al. (2017), high achievers in mathematics excel in several domain-general cognitive processes, and particularly in 
spatial ability (e.g., Benbow & Minor, 1990; Lubinski & Benbow, 2006) and working memory (e.g., Leikin et al., 2013; 
Swanson, 2006). This has mainly been demonstrated by research on older individuals and it remains to be determined 
whether similar findings can be observed in young children with high mathematics achievement.

Linn and Petersen (1985, p. 1482) provided the following common definition of spatial ability: “skill in representing, 
transforming, generating, and recalling symbolic, non-linguistic information”. Factor analytic studies have identified 
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a broad array of different spatial abilities, such as spatial visualization, mental rotation, and spatial perception (e.g., 
Carroll, 1988). While the factors identified across the different studies do not always align, spatial visualization ability 
seems to be the most often identified type of spatial ability (e.g., Uttal et al., 2013). Spatial visualization ability refers 
to “the ability to imagine and mentally transform spatial information” (Uttal et al., 2013, p. 353) and is measured by 
tasks that involve the manipulation of spatially presented information (Linn & Petersen, 1985), such as the Block Design 
test of the WISC (Wechsler, 1991). Various studies have reported that high levels of spatial abilities are a characteristic 
of high-achieving individuals in mathematics, particularly in adolescence and adulthood (Benbow & Minor, 1990; Van 
Garderen, 2006).

Another domain-general cognitive factor that is thought to contribute to high mathematics achievement is working 
memory (Myers et al., 2017), which refers to the maintenance plus manipulation of information (Aben et al., 2012). 
Findings regarding the role of working memory, and, in particular, visual-spatial working memory, in high mathematics 
achievement are quite consistent, showing that high mathematics achievers have an advantage over average-achieving 
peers on visual-spatial working memory tasks (i.e., Berg & McDonald, 2018; Kroesbergen & Schoevers, 2017; Leikin et 
al., 2013). Swanson (2006) further observed that this also holds for verbal working memory.

Given the above-mentioned research evidence, spatial visualization ability and working memory were included 
as variables of interest in the current study. Another reason for including them was that both variables have been 
linked to the development of symbolic number processing (Bull et al., 2008; Hawes et al., 2019). Hawes et al. (2019) 
reported strong correlations between spatial visualization ability and symbolic magnitude and order processing ability, 
and between working memory ability and symbolic magnitude and order processing ability. One explanation for the 
association between spatial visualization ability and symbolic number processing is that the magnitude and order of 
numbers are represented on a line, the so-called mental number line, which acts as a scaffold for the understanding of 
magnitude and order (Hawes & Ansari, 2020, see also Schneider et al., 2018). The number line is a spatial tool that helps 
children to represent numbers, and is often used in teaching children’s understanding of magnitude and order. Working 
memory might relate to the processing of symbolic numbers by activating and manipulating the numerical information 
in long-term memory in order to decide if a number is larger or if they are in the correct order.

These associations between spatial visualization ability and working memory with symbolic number processing 
raise the question whether potential differences in symbolic number processing between high mathematics achieving 
children and average-achievers might be driven by domain-general differences in their spatial visualization ability 
and/or working memory (as mentioned by Preckel et al., 2020). By measuring the domain-general cognitive abilities 
and symbolic number processing abilities simultaneously, we were able to investigate their unique contributions to high 
mathematics achievement and to examine the interaction of domain-specific and domain-general factors in relation to 
high achievement in mathematics.

Current Study
The current study investigated the role of symbolic number processing in high mathematics achievement in children 
in third and fourth grade of primary school. This age was chosen because of the observed a shift in the middle grades 
(i.e., Grades 3 and 4) from cardinal to ordinal processing with regard to relative importance of symbolic skills to 
predict arithmetic performance from Grade 1 to Grade 6 (Lyons et al., 2014). We additionally investigated the role of 
domain-general cognitive abilities, i.e., spatial visualization and working memory, in high mathematics achievement. 
While these cognitive factors have been investigated in adolescents and adults with high mathematics achievement, thus 
far, the role of these factors in high mathematics achievement has rarely been examined in primary school children. 
We additionally extended the current body of literature by using a stringent criterion for defining high mathematics 
achievement. More specifically, participants were only included in the high-achieving group if they showed persistent 
high achievement in mathematics (i.e., above the 90th percentile across multiple time points). This multiple assessment 
criterion has been applied in literature on children with dyscalculia with the main aim of lowering the possibility of 
having false positives in the achievement groups (Mazzocco & Thompson, 2005).

The current study aimed to address three objectives. First, we investigated whether there were differences between 
high-achieving children in mathematics and average-achieving children in symbolic number processing. Based on the 
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above-reviewed studies, we expected that the children who are high achieving in mathematics would outperform the 
average-achieving children on both measures of basic symbolic number processing. Second, we tested whether there 
were group differences in the spatial visualization ability and working memory. Based on the above-reviewed studies, 
we expected to replicate that the children with high mathematics achievement would outperform the average-achieving 
children on both domain-general cognitive abilities. Lastly, we assessed the unique contributions of both symbolic num
ber processing and domain-general abilities to high mathematics achievement versus average mathematics achievement. 
We explored whether the symbolic number processing abilities would still be a significant contributing factor to high 
mathematics achievement, when we also considered group differences in domain-general cognitive abilities.

Method

Participants
Selection Procedure

The participants were selected based on their persistent percentile ranking of the Flemish Student Monitoring System 
for mathematics or LVS-math (Van Rompaey & Vandenberghe, 2015). This is a curriculum-based, grade-appropriate 
set of standardized achievement tests for mathematics used in Flanders (Belgium). This set of tests allows teachers to 
examine to which extent children have mastered the mathematics curriculum that was taught during the school year. As 
the LVS tests were used to select participants, it is important to note that only schools that used this monitoring system 
could participate in our study, but the majority of schools in Flanders (Belgium) do so. These tests were administered by 
the school before this study started. These tests cover different mathematical subdomains, i.e., number and arithmetic, 
geometry, measurement, and mathematical problem solving. Cronbach’s alpha coefficients between .88 and .91 have 
been reported (Dudal, 2000).

All children in Grade 3 and 4 of the eight participating schools were given informed consent forms and 286 
forms were returned. Fifty children were explicitly not allowed to participate by their parents. For those children who 
consented, we requested the schools to send us the most recent LVS data. For the children in Grade 3, we collected 
LVS-math data from the middle of Grade 2 (February) and the beginning of Grade 3 (September). For the children in 
Grade 4, we had LVS-math data from the middle of Grade 3 (February) and the beginning of Grade 4 (September). There 
were five to six months between the last LVS-math test and the start of the data collection.

To be included in the high mathematics achieving group, children had to score above the 90th percentile on the 
LVS-math on two consecutive time points that were at least 6 months apart. All high-achieving children for whom we 
received informed consent were included in our sample. Each high-achieving child was individually matched with a 
child from the same class that scored between the 25th and 75th percentile on the same LVS-math tests at the same 
two consecutive time points. Similar criteria have previously been used in research on high mathematics achievers 
(Iglesias-Sarmiento et al., 2020; Kroesbergen & Schoevers, 2017). Selecting matched children from the same class allowed 
us to account for possible differences in children’s educational environments. The children of the average mathematics 
achieving group were further matched as closely as possible on gender and chronological age with a child from the high 
mathematics achieving group.

Final Sample

The final sample consisted of 32 high-achieving children in mathematics and 32 average-achieving children in mathe
matics (Table 1). Seventeen pairs came from Grade 3, and 15 pairs attended Grade 4. To evaluate our matching, we 
compared the age and gender distribution of the two groups. A paired-samples t-test showed that the matched pairs did 
not differ in age (Table 1). A chi-square test revealed that the distribution of boys and girls was not different across the 
two groups, χ2(1) = 0.25, p = .614.
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Table 1

Group Characteristics

Variable
High mathematics 

achievers
Average mathematics 

achievers t p Cohen’s d BF10
a

Gender 13 girls, 19 boys 15 girls, 17 boys – – – –

Age in months (SD) 109.10 (6.51) 109.16 (5.73) -0.08 .936 -.02 0.30

Age range in months 98 – 122 99 – 120 – – – –

LVS range (Pc) 91.50 – 99 25 – 75 – – – –
aThe Bayes factor gives the relative support of the data for the alternative hypothesis (BF10; evidence for group differences) compared to the null 
hypothesis (evidence for no group difference) (see section Analyses).

Materials
Symbolic Number Processing

The two symbolic number processing tasks were computerized and developed with OpenSesame 3.1.9 Software (Mathôt 
et al., 2012).

Symbolic Magnitude Comparison Task — To measure the magnitude aspect of number processing, we used a 
symbolic magnitude comparison task with Arabic digits. The child had to compare pairs of Arabic numerals: one 
displayed on the left side of the computer screen and another displayed on the right (Vanbinst et al., 2012). Each trial 
started with a 200‐ms fixation point in the center of the screen. Stimuli appeared after 1000 ms and remained on the 
screen until the child responded. The child had to determine as quickly as possible the largest number by pushing one 
of two indicated buttons on the keyboard (left d; right k). The task was preceded by three practice trials to familiarize 
the child with the task demands. The task consisted of 36 trials with the Arabic numerals one to nine. Stimuli were 
designed to comprise half of the possible combinations of the numerosities from 1 to 9. The distance between the items 
ranged from 1 – 8 (see Appendix A for a full list of items). The position of the correct answer was counterbalanced. The 
computer registered the accuracy and response time.

Symbolic Numerical Order Task — To measure the ordinal aspect of number processing, we used the numerical order 
task (see Lyons & Ansari, 2015). In this task, three numbers were presented horizontally in the middle of the screen. 
The three numbers were in numerically increasing order (left–right) in 12 trials (e.g., 4-6-8). In the other 12 trials, the 
three numbers were not in an increasing order (e.g., 6-7-5). Each triplet was presented once in the in-order condition and 
once in the mixed-order conditions. The combinations of possible numbers were as follows: 14 in-order and mixed-order 
items with a distance of 1, 10 in-order and mixed order items with a distance of 2 (see Appendix A for a full list of 
items). If the numbers were in increasing order, the child had to press the left key (d). If the numbers were not in 
increasing order, the child had to press the right key (k). Four practice trials were presented to familiarize the child with 
the task demands. The task consisted of 24 trials. Each trial started with a 200‐ms fixation point in the center of the 
screen. Stimuli appeared after 1000 ms and remained on the screen until the child responded. The computer registered 
both the accuracy and response time.

Spatial Visualization Ability

We used the Block Design subtest of the WISC-III (Wechsler, 1991) as a measure of spatial visualization ability (Linn & 
Petersen, 1985). The child was asked to rearrange blocks that had two red sides, two white sides, and two red-and-white 
sides to match a provided design. The designs got increasingly difficult; the child first needed to match a design with 
four blocks and after a few trials with nine blocks. When the child answered two items incorrectly (i.e., a wrong design 
or when the time limit was reached), the task was stopped. The outcome measure was determined by the accuracy and 
the speed by which each item was solved. Raw scores were used (maximum = 69). We opted for the raw scores given 
that we wanted to avoid any unwarranted effects of out-of-date norms, which might induce measurement error.
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Working Memory

Backward Corsi Block Tapping Task — We measured the visual-spatial working memory with the backward Corsi 
block tapping task (Corsi, 1972). This task consisted of a set of 9 identical blocks positioned on a board. This board was 
placed in front of the child. The numbers were only visible to the experimenter. The experimenter tapped a sequence of 
blocks and the child was instructed to remember the sequence and, in this backward version, to tap the same sequence 
in reverse order. Sequences started with two blocks and got increasingly complex due to the increasing length of the 
sequence, with a maximum of nine blocks. For each sequence length, three trials were presented to the child. If the child 
answered two trials of the same sequence length incorrect, the task was stopped. Two practice trials were provided to 
ensure that the child was familiar with the concept of ‘reverse order’. A score of one was given for each correctly tapped 
sequence (maximum = 24).

Backward Digit Span Task — We measured verbal working memory with the backward digit span (De Smedt et al., 
2009). The experimenter recited a sequence of digits and the child had to repeat the sequence in reverse order. The 
sequence got increasingly difficult starting with two numbers and a maximum of eight numbers. For each sequence 
length, three trials were presented to the child. The child first completed 2 practice trials and then 21 test trials (7 blocks 
of 3 items). The task was stopped after two incorrect items within a block with sequences of the same length. A score of 
one was given for each correct answer (maximum = 21).

Control Tasks

Motor Speed Task — A motor speed task was included in order to control for the speed of response in answering 
on the keyboard (De Smedt & Boets, 2010). The task procedure was highly similar to the procedure of the two other 
computer tasks mentioned above. Two shapes were displayed simultaneously on the screen – one on the left and one 
on the right. One of these shapes was filled. The child had to press the key (d or k) corresponding to the side with 
the filled-in figure. The child was asked by the experimenter to respond as quickly and accurately as possible. Twenty 
experimental trials were displayed after three practice trials. The shapes were circle, triangle, square, star and heart. 
Each shape occurred four times filled and four times non-filled. The position of the filled shape was counterbalanced. 
Mean reaction time of the correct responses was used as the outcome measure.

One Minute Reading Test (OMT) — Given that mathematical skills have been reported to be highly correlated with 
reading skills (e.g., Bull & Scerif, 2001), we included the OMT (Brus & Voeten, 1991) to control for children’s word 
decoding skills. This task consisted of four columns with 29 words each. The child had one minute to read aloud as 
many words as possible. Words became increasingly more difficult. The outcome measure was the number of words that 
were read correctly.

Vocabulary Test — As a control for children’s verbal ability, we used the vocabulary test of the WISC-III (Wechsler, 
1991). This subtest comprises 35 words spoken by the experimenter. The words became increasingly difficult. The 
children are asked to explain the meaning of each word. The provided explanation is scored based on the whether 
certain keywords are mentioned (maximum = 70).

Procedure
All testing was done individually in a quiet location at the children’s schools. Testing was done in two sessions of 
approximately 30 minutes each. All tasks were administered in the same order to all children. The first block consisted 
of the motor task, block design, OMT, and symbolic magnitude comparison. The second block consisted of the backward 
Corsi block tapping task, numerical order task, vocabulary test, and the backward digit span task.

Analyses
Analyses were run in JASP (JASP Team, 2019). JASP stands for Jeffreys's Amazing Statistics Program and can be 
used for standard and more advanced statistical analyses. It is an open-source program that allows users to use both 
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frequentist and Bayesian analyses. We ran paired-samples t-tests analyses, using both frequentist and Bayesian methods 
in JASP to examine if the high- and average-achieving groups differed significantly in their symbolic number processing 
abilities, domain-general cognitive skills and control variables. Accuracy in the symbolic number processing tasks was, 
as expected, very high. These accuracy data were converted to proportions, which were further arc-sine transformed 
and these transformed data were used when conducting subsequent statistical tests.

Frequentist analyses were used as they are an often-used method to assess the statistical significance of results. 
Cohen’s d (1988) was examined to interpret the magnitude of differences. Cohen’s criteria indicate that a small effect 
is around d = .20; a medium effect around d = .50 and a large effect is greater than d = .80 (Cohen, 1988). Bayesian 
paired-samples t-tests were conducted as additional analyses. Bayes factors (BF) compare the fit of the data under the 
null hypothesis (BF01) with the alternative hypothesis (BF10), and thereby quantify the evidence in favor of one of these 
hypotheses (see Andraszewicz et al., 2015). For example, a Bayes factor of 20 (BF10 = 20) indicates that the data are 
20 times more likely under the alternative hypothesis than under the null hypothesis. Likewise, a Bayes factor of 0.5 
(BF10) indicates that the data are 20 times more likely under the null hypothesis than under the alternative hypothesis. 
By using Bayesian analyses, we could get a more fine-grained understanding of group differences or the lack thereof. 
A Bayes factor is a continuous measure of evidence, but there are some classification schemes that can be used for 
interpretation (e.g., Andraszewicz et al., 2015; Jeffreys, 1939/1961): BF10 = 1 indicates no evidence for either hypothesis, 
BF10 > 1 indicates anecdotal evidence, BF10 > 3 indicates moderate evidence, BF10 > 10 indicates strong evidence, BF10 > 30 
indicates very strong evidence, and BF10 > 100 indicates decisive evidence for the alternative hypothesis. We used the 
default priors in JASP, as there was too little research available to determine informed priors.

Lastly, we ran a binary logistic regression analysis to determine which of the variables best discriminated among 
the two groups (i.e., high mathematics achievers versus average mathematics achievers) and to investigate if symbolic 
number processing abilities would still be a significant predictor of high mathematics achievement, when we also 
considered children’s domain-general cognitive abilities and other control variables.

Results

Descriptives
The descriptive statistics for each group’s scores on symbolic number processing, spatial visualization ability, and 
working memory tasks are shown in Table 2. Skewness values and Shapiro-Wilk tests are also reported. There were 
however, two outliers on the numerical order processing task as determined via visual inspection of a box-plot of the 
data (i.e., participants that had only 14 and 16 items correct). The analyses described below were rerun with those 
participants removed to see if this affected our results, but this did not change our results. The subsequent analyses are 
therefore reported for the full sample.
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Group Comparisons
The results of the group comparisons on the symbolic number processing tasks and the domain-general cognitive 
measures are provided in Table 3. There was no significant group difference on the symbolic magnitude comparison 
task. Results indicated a significant group difference on the numerical order task (both RT and accuracy), and the Bayes 
factor indicated that the evidential strength of these differences was moderate.

Table 3

Results of the Paired-Samples t-tests for the Measures Under Study

Variable t (df = 31) p Cohen’s d BF10

Number processing
Symbolic comparison (Accuracy) 1.28 .210 .23 0.40

Symbolic comparison (RT) -1.78 .085 -.31 0.77

Numerical order (Accuracy) 2.71 .011 .48 4.14

Numerical order (RT) -2.65 .013 -.47 3.61

Spatial visualization ability (Block Design) 3.34 .002 .59 16.39

Working memory
Visual-spatial working memory (Corsi) 1.75 .089 .31 0.74

Verbal working memory (Digit span) 2.22 .034 .39 1.59

The two groups differed significantly in spatial visualization ability, and the Bayes factor indicated that evidence for this 
difference was strong. There was no significant group difference for the backward Corsi block tapping task. However, a 
significant group difference in backward digit span was found, but the Bayes factor revealed that the evidence for this 
difference was only anecdotal.

Control Variables
We further verified if the two groups differed in terms of their motor speed, reading ability, and vocabulary (Table 4). 
The groups did not differ in their motor speed and reading ability but a significant difference in vocabulary was 
observed.

Table 4

Control Variables

Variable

High mathematics 
achievers

Average mathematics 
achievers

t p Cohen’s d BF10M SD M SD
Motor RT (ms) 517.10 97.86 524.00 85.03 -0.36 .722 -0.06 0.20

One Minute Test 60.84 12.78 55.13 13.14 1.94 .062 0.34 0.99

Vocabulary 34.00 6.25 30.81 1.90 2.43 .021 0.43 2.37

Logistic Regression Analyses
To gain an understanding of the unique contributions of our investigated variables to high mathematics achievement, 
we conducted a binary logistic regression analysis with achievement group as the dependent variable (Table 5). All 
variables under study were included as predictors in the model. This model tested the likelihood that the participants 
would belong to the high-achieving group versus the average-achieving group. The full model containing all predictors 
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was statistically significant, χ2(10) = 23.76, p = .008. The model explained 41.3% variance (Nagelkerke R 2) and categorized 
75% of the participants correctly in the two groups. Only spatial visualization ability emerged as a significant predictor 
and was associated with a higher likelihood of belonging to the high mathematics achieving group. More specifically, 
for each increase in the score on the Block Design test, the odds of belonging to the high mathematics achievement 
group increased by a factor of 1.076.

Table 5

Results of the Logistic Regression Analysis

Variable B SE β p Exp(B)

Symbolic comparison (Accuracy) 0.366 3.474 .039 .916 1.441

Symbolic comparison (RT) -0.003 0.004 -.354 .502 0.997

Numerical order (Accuracy) 3.529 2.577 .546 .171 34.094

Numerical order (RT) -0.001 0.001 -.640 .162 0.999

Spatial visualization ability 0.073 0.034 .818 .029 1.076

Verbal working memory 0.219 0.177 .453 .215 1.245

Visual-spatial working memory -0.205 0.185 -.442 .269 0.815

One Minute Reading Test 0.031 0.030 .410 .302 1.032

Motor Reaction Time 0.004 0.006 .384 .459 1.004

Vocabulary 0.024 0.062 .147 .691 1.025

Discussion
During the past decades, there have been major gains in our understanding of the cognitive characteristics of typically 
developing children, and of the cognitive factors associated with dyscalculia. Largely absent are studies that examine 
the cognitive correlates of children with high mathematics achievement. Previous studies in this research domain have 
mainly focused on adolescents and adults, with little attention to children. The role of spatial ability and working 
memory in high mathematics achievement has garnered some attention, but much less is known about the number 
processing abilities of individuals with high mathematics achievement. In the current study, we compared children 
that showed persistent high mathematics achievement to their persistent average-achieving peers. The main aim of 
this study was to examine whether children who demonstrate high mathematics achievement excel in their basic 
ability to process number. Of primary interest were the two components of basic symbolic number processing, namely 
magnitude and order, that have been found to play an important role in explaining mathematics achievement in 
typically developing children (e.g., Lyons et al., 2014) and that have been shown to be impaired in dyscalculia (De 
Smedt et al., 2013; Morsanyi et al., 2018; Schwenk et al., 2017). We additionally examined two domain-general cognitive 
factors—spatial visualization ability and working memory—that have previously been investigated in adolescents with 
high mathematics achievement, but that have received less attention in young children (Berg & McDonald, 2018; 
Kroesbergen & Schoevers, 2017; Myers et al., 2017; Swanson, 2006; Van Garderen, 2006). By simultaneously investigating 
these two domain-general cognitive abilities and symbolic number processing abilities, we were also able to assess their 
unique contributions to high mathematics achievement.

Analyses with regard to the symbolic number processing tasks revealed small differences between the mathematics 
achievement groups for order (both accuracy and RT), but no differences for magnitude comparison. The latter result is 
somewhat surprising given the findings of Castronovo and Göbel (2012), who reported increased symbolic magnitude 
comparison abilities in adults with high mathematics achievement. These conflicting findings might be due to the 
different operationalization of high mathematics achievement (i.e., attending a math-extensive education in adulthood 
versus high achievement on a curriculum-based test in primary school). The symbolic magnitude comparison tasks 
also differed, as Castronovo and Göbel (2012) used larger numerosities (i.e., 31 to 99). We decided to use single-digit 
numbers given that the majority of studies on numerical magnitude comparison and order processing have focused 
on the 1-9 number range (De Smedt et al., 2013; Schneider et al., 2017; Schwenk et al., 2017), even studies with adults 
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(Goffin & Ansari, 2016) and mathematicians (Hohol et al., 2020). Using larger numerosities in our task might have led 
to larger group differences in the current study, a possibility that requires further investigation. However, our result is 
in line with the findings of Kroesbergen and Schoevers (2017), who also reported no differences in symbolic magnitude 
comparison between high and average mathematics achievers, even though they used larger numerosities. While 
symbolic magnitude comparison ability is related to individual differences in mathematics achievement (Schneider et 
al., 2017) and is considered as a core deficit in dyscalculia (Schwenk et al., 2017), it does not appear to be a critical 
cognitive characteristic of high mathematics achievement. These converging data might indicate that a certain level of 
symbolic magnitude comparison ability is needed for good performance in mathematics, but that above this level other 
factors, such as domain-general cognitive abilities, might become more important determinants of high mathematics 
achievement (Kroesbergen & Schoevers, 2017).

The current study observed group differences on the numerical order task, but these differences were small. A 
possible explanation for differences in numerical order, but not magnitude comparison, is the age-related shift in 
the predictive value of these two symbolic number processing abilities for later mathematics achievement (Lyons et 
al., 2014): While the role of symbolic magnitude comparison decreased across school years, the predictive power of 
numerical order processing for later mathematics achievement increased. This might indicate that the numerical order 
processing task was more sensitive to group differences in the current study.

The absence of strong evidence for group differences on the symbolic number processing ability tasks merits further 
comment. This finding does not preclude the possibility that increased symbolic number processing ability might be 
an important characteristic of high mathematics achievement. High achievers may have a heightened symbolic number 
processing ability earlier in development, but this may attenuate across development, when, for example, more complex 
number processing abilities start to become more important. Future studies should investigate whether symbolic magni
tude and order processing might have a time limited role in high mathematics achievement in children, particularly 
at younger ages. Alternatively, future studies on symbolic number processing in children with high mathematics 
achievement should shift the focus to more complex numbers, such as fractions (e.g., Obersteiner et al., 2013). Building 
on studies dealing with numerical order processing, one could also include abilities that require insight in complex 
relations between numbers, as is the case in patterning abilities (e.g., MacKay & De Smedt, 2019), which have been 
coined as a critical component of mathematical ability (e.g., Wijns et al., 2019).

It is plausible to assume that group differences in symbolic number processing ability might be observed when 
more fine-grained indices of the symbolic magnitude processing and order processing are considered, i.e., the canonical 
numerical distance effect and the reversed distance effect, respectively. Performance on a numerical magnitude compari
son task is poorer (i.e., slower reaction times) for numbers that are closer together (e.g., 5 and 6) compared to numbers 
further apart (e.g., 2 and 7), which is the classic numerical distance effect (Vogel et al., 2021). It has been posited that 
smaller numerical distance effects are reflective of more precise representations of the number representation system 
(e.g., Schwenk et al., 2017). A reverse distance effect is often reported for the numerical order task (Vogel et al., 2021), 
where participants are often faster when the distance between the three in-order numbers is small (3 4 5) compared 
to when the distance is large (2 4 6). Interestingly, a very recent study by Hohol et al. (2020) examined whether 
professional mathematicians showed a smaller canonical numerical distance effect as compared to engineers, social 
scientists, and a reference group from the general population. Mathematical experts, however, did not show a smaller 
numerical distance effect than the other groups. Against this background, we explored whether we could find the 
canonical numerical distance effect and the reverse distance effect in the current study and more critically, whether the 
high math achievers showed different distance effects compared to the average achieving children. Both participating 
groups in the current study showed the classic comparison distance effect and reversed distance effect for numerical 
order. Similar to what has been observed in professional mathematicians (Hohol et al., 2020), our results revealed no 
statistically significant difference between our achievement groups with regard to the size of these distance effects (see 
Appendix B).

Turning to the domain-general cognitive abilities, similar to Van Garderen (2006), we found that high mathematics 
achieving children showed better spatial visualization ability than their average-achieving peers. Spatial ability is one 
of the most frequently identified characteristics of high mathematics achievement (Myers et al., 2017). Previous studies 
among adolescents (Hoppe et al., 2012; Lubinski & Benbow, 2006) and adults (e.g., Wei et al., 2012) have shown 
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increased spatial abilities in individuals with high mathematics achievement. The current study shows and replicates 
that heightened spatial visualization abilities are already observed in primary school children with high mathematics 
achievement. Together with the previous findings involving adolescents and adults, these results converge to suggest 
that high spatial visualization ability might be an important characteristic of high mathematics achievers. Several 
mechanisms have been proposed to underlie the relationship between spatial (visualization) abilities and mathematical 
ability (Hawes & Ansari, 2020). One mechanism suggests that numbers might be represented spatially (Hawes & Ansari, 
2020). Another mechanism suggests that spatial visualization might provide a “mental blackboard” that allows us to 
model and visualize mathematical content. Recent data by Gilligan et al. (2020) showed that spatial ability training 
leads to improvements in mathematics performance in children, demonstrating the causal influence of spatial ability on 
mathematics achievement. These data emphasize the importance of spatial ability for (high) mathematical performance.

Findings were mixed regarding the role of working memory in high mathematics achievement. High mathematics 
achievers performed similar to controls on the Corsi block tapping task. Frequentist analyses showed a significant—yet 
small—group difference for digit span backwards, but the Bayes factor indicated that this evidence was only anecdotal. 
In all, we do not observe higher working memory capacity in children with high mathematics achievement, at least 
not at this age. Our results are inconsistent with findings on the contribution of working memory among children and 
adolescents of high mathematical achievement (e.g., Berg & McDonald, 2018; Kroesbergen & Schoevers, 2017; Leikin 
et al., 2013; Swanson, 2006), who showed that high mathematics achievers had an advantage in working memory over 
their average-achieving peers. There are some small differences between these studies and the current one that might 
explain these discrepant findings, such as the use of different mathematical tasks to select participants. The precise role 
of working memory in high mathematics achievement in children remains unclear, and future research is needed to 
deepen our understanding of the complex association between working memory and high mathematics achievement.

The above-described findings demonstrate that visual-spatial working memory and spatial visualization ability 
might have different roles in high mathematics achievement, aligning with recent observations by Hawes et al. (2019). 
Specifically, these authors found that spatial visualization ability was an important contributor to mathematics achieve
ment in typically developing children, while executive functions (including visual-spatial working memory) did not 
significantly explain performance in mathematics. According to Hawes et al. (2019), one explanation might be the 
different emphasis of the tasks used to measure visual-spatial working memory and spatial visualization ability, i.e., the 
need to recall spatial information versus the need to self-generate and/or manipulate visual-spatial information. These 
authors further suggested that particularly this ability to self-generate and manipulate visual spatial information, may 
be relevant for acquiring mathematical skills. Another explanation might relate to the sensitivity of both tasks to capture 
individual differences. The Corsi block test had lower between-subject variability compared to the Block Design, for 
which reason its sensitivity might have been lower. Overall, the current data indicate that increased spatial visualization 
ability in children with high mathematics achievement might be one reason why they excel in mathematics.

The inclusion of both symbolic number processing abilities as well as domain-general cognitive abilities in the 
present study allowed to examine their unique contribution to high mathematics achievement. This is crucial, as 
previous studies have revealed that these symbolic number processing abilities and domain-general cognitive abilities 
are highly related (Hawes et al., 2019). Critically, we found that spatial visualization ability was a more important 
cognitive factor underlying high mathematics achievement than the symbolic number processing abilities. Important 
to mention is that we used only one task of spatial ability, however, spatial ability is not a unitary construct (Mix et 
al., 2016). Besides spatial visualization, other components of spatial ability (e.g., mental rotation and figure copying 
etc.) might also play an important role in high mathematics achievement. Future studies should investigate which 
components of spatial ability are particularly important for high achievement in mathematics.

When evaluating the above findings, it should be kept in mind that they were based on a sample of children 
that were high achieving in mathematics, but not necessarily mathematically gifted (Brandl, 2011; Miller, 1990; Singer 
et al., 2016). Some scholars argue that mathematical giftedness might best be described as a potential (e.g., Leikin, 
2010), which does not necessarily lead to high attainment, as shown by the phenomenon of underachievement among 
gifted individuals. Mathematics achievement tests might therefore ignore these mathematical gifted students who 
achieve below their potential (e.g. Davis & Rimm, 2004). Current findings may therefore not entirely generalize to the 
population of mathematical gifted children.
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Furthermore, a shortcoming of the current study was the small sample size, which might make it difficult to find 
small effects. Indeed, potential differences in symbolic processing might be very subtle between individuals with and 
without high mathematics achievement. It is therefore important to replicate this study with a larger sample size in 
order to address the role of symbolic number processing, spatial visualization ability, and working memory in high 
mathematics achievement more thoroughly.

It is clear that much remains to be learned about the cognitive characteristics of young children with high achieve
ment in mathematics. In this study, we primarily focused on very basic symbolic number processing abilities. As men
tioned earlier, it would be interesting to examine whether magnitude and order processing might play a more important 
role in high mathematics achievement earlier in development. Another interesting avenue for further research would 
be to examine mathematical domains that might really allow high achievers to show their mathematical potential, for 
example, domains such as flexibility in mathematical thinking identified by the Russian psychologist Krutetskii (1976) 
in his pioneering study on high mathematics achievement. As argued by Krutetskii (1976), rather than using tasks that, 
target speed of behavioral responses, it might be productive to include problems that elicit diversity of reasoning and 
solution methods, tapping children’s flexibility of thinking.
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Appendices

Appendix A
Table A1

List of the Items of the Symbolic Magnitude Comparison Task

Item

Stimulus

Distance RatioLeft Right

1 1 8 7 .125

2 3 6 3 .5

3 7 2 5 .286

4 8 9 1 .89

5 6 4 2 .67

6 7 5 2 .714

7 8 2 6 .25

8 9 6 3 .67

9 2 5 3 .4

10 3 1 2 .33

11 2 4 2 .5

12 7 8 1 .875

13 4 5 1 .8

14 7 1 6 .143

15 6 8 2 .75

16 2 3 1 .67

17 7 6 1 .86

18 9 3 6 .33

19 2 1 1 .5

20 5 6 1 .83

21 9 1 8 .11

22 3 5 2 .6

23 8 4 4 .5

24 7 9 2 .78

25 4 3 1 .75

26 5 9 4 .56

27 2 6 4 .33

28 8 3 5 .375

29 5 1 4 .2

30 9 2 7 .22

31 1 4 3 .25

32 3 7 4 .43

33 5 8 3 .625

34 7 4 3 .57

35 1 6 5 .167

36 9 4 5 .44
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Table A2

List of the Items of the Numerical Order Task

Item Order

Stimulus

DistanceLeft Center Right

1 yes 2 3 4 1

2 no 2 1 3 1

3 no 7 9 8 1

4 yes 3 4 5 1

5 yes 1 2 3 1

6 no 7 5 9 2

7 yes 5 6 7 1

8 no 6 2 4 2

9 no 6 4 5 1

10 yes 1 3 5 2

11 yes 6 7 8 1

12 yes 3 5 7 2

13 no 6 8 7 1

14 no 2 4 3 1

15 yes 5 7 9 2

16 no 8 4 6 2

17 yes 4 5 6 1

18 yes 4 6 8 2

19 no 5 3 7 2

20 no 4 5 3 1

21 no 6 7 5 1

22 yes 7 8 9 1

23 no 3 5 1 2

24 yes 2 4 6 2

Appendix B

Numerical Distance Effect

We used a similar approach as Goffin and Ansari (2016), by calculating an average reaction time for the correct trials with a small 
distance and for trials with a large distance. Goffin and Ansari (2016) defined trials with a distance of 1-3 as trials with a small 
distance, and trials with a distance of 4-6 as trials with a large distance. We used the same approach to split up our distances. Because 
we also had trials with larger distances (7-8), we included these as large distances as well. Analogous to Goffin and Ansari (2016), 
the distance effect for the symbolic comparison task was calculated as follows, using only the correct trials: NDE = (meanRT1,2,3 – 
meantRT4,5,6,7,8)/meanRT1,2,3,4,5,6,7,8). We found a significant distance effect, given that the average RT for the large distances (M = 
685.83, SD = 128.65) was significantly lower than the RT for the small distances (M = 772.18, SD = 137.32), t(63) = 10.86, p < .001, 
Cohen’s d = 1.357, BF10 = 1.394e+13. Next, we compared the NDE of the average and high achievers. While the size of the NDE was 
smaller for the high achievers (M = .104, SD = .062) compared to the average achievers (M = .131, SD = .089), this difference was not 
significant, t(31) = -1,495, p = .145, Cohen’s d = -.264, BF10 = 0.517.

Reverse Distance Effect

We used a similar approach as Goffin and Ansari (2016), by calculating an average reaction time for trials with a small distance and 
for trials with a large distance. We included only in-order trials (1-2-3), given that the reverse distance effect has only been found 
for those trials (Lyons & Ansari, 2015), and not for out of order trials such as 2-1-3. Analogous to Goffin and Ansari (2016), the 
reverse distance effect for the numerical ordering task was calculated as follows, using only the correct trials: RDE = (meanRT1– 
meantRT2)/meanRT1,2). Participants responded faster on the items with a distance of 1 (M = 1625.62, SD = 557.06) compared to the 
items with a distance of 2 (M = 1912.16, SD = 713.14), t(63) = -4.124, p < .001, Cohen’s d = -.516, BF10 = 193.95, showing the expected 
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reverse distance effect. The RDE of the high achievers (M = -.21, SD = .20) and the average achievers (M = -.102, SD = .28) was not 
significantly different, t(63) = -1.946, p = .061, Cohen’s d = -.344, BF10 = 1.00.
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