Department of Philosophy, History and Art, University of Helsinki, Helsinki, Finland
Abstract
An important paradigm in modeling the complexity of mathematical tasks relies on computational complexity theory, in which complexity is measured through the resources (time, space) taken by a Turing machine to carry out the task. These complexity measures, however, are asymptotic and as such potentially a problematic fit when descriptively modeling mathematical tasks that involve small inputs. In this paper, we argue that empirical data on human arithmetical cognition implies that a more fine-grained complexity measure is needed to accurately study mental arithmetic tasks. We propose a computational model of mental integer addition that is sensitive to the relevant aspects of human arithmetical ability. We show that this model necessitates a two-part complexity measure, since the addition tasks consists of two qualitatively different stages: retrieval of addition facts and the (de)composition of multidigit numbers. Finally, we argue that the two-part complexity measure can be developed into a single response-time measure with the help of empirical study of the two stages.