The Complexity of Mental Integer Addition


  • Stefan Buijsman
  • Markus Pantsar


An important paradigm in modeling the complexity of mathematical tasks relies on computational complexity theory, in which complexity is measured through the resources (time, space) taken by a Turing machine to carry out the task. These complexity measures, however, are asymptotic and as such potentially a problematic fit when descriptively modeling mathematical tasks that involve small inputs. In this paper, we argue that empirical data on human arithmetical cognition implies that a more fine-grained complexity measure is needed to accurately study mental arithmetic tasks. We propose a computational model of mental integer addition that is sensitive to the relevant aspects of human arithmetical ability. We show that this model necessitates a two-part complexity measure, since the addition tasks consists of two qualitatively different stages: retrieval of addition facts and the (de)composition of multidigit numbers. Finally, we argue that the two-part complexity measure can be developed into a single response-time measure with the help of empirical study of the two stages.